answersLogoWhite

0


Best Answer

When an alkali metal is placed in water it will float and produce a gas like hydrogen which ignites in the presence of oxygen - producing a flame. The reactions get more and more vigorous as you move down the group.

I may only be a grade 9 student but I think I may know this. Lithium, Sodium and Potassium are HIGHLY reactive to water. Lithium lightly sizzles when it reacts with water, and it produces a small amount of gas. Sodium reacts a little more, it bubbles on the water and creates a large amount of gas. Potassium has the most violent reaction to water, it actually pops when it comes into contact. It really explodes when you put it in water. It almost produces a red flame on top of the water.

So you see, they are ordered by the level of reactivity.

--------------------

Francium is the most reactive and electronegative chemical element; unfortunately is extremely rare and currently not available for chemical experiments. Also is very radioactive.

The increasing order of reactivity with water is: Lithium, Sodium, Potassium, Rubidium, Caesium, Francium.

The reactivity of chemical elements is controlled by their electronegativity; this parameter is decreasing from lithium to francium. The minimal electronegativity is equivalent to maximal reactivity.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

12y ago

Francium is the most reactive chemical element; unfortunately is extremely rare and currently not available for chemical experiments. Also is very radioactive.

The increasing order of reactivity with water is: Lithium, Sodium, Potassium, Rubidium, Caesium, Francium.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the trend in the reactivity of the three alkali metals with water?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What order of reactivity NOT activity are the metals Barium Lithium Radium and Sodium in?

The metals listed are all alkali metals or alkali-earth metals. The periodic trend for these groups is: as you move down the group/family, reactivity increases. The alkali metals will be more reactive than the respective alkali-earth metals.Sodium and lithium are alkali metals, so you can organize them first. Sodium is further down in the family than lithium, so we can say that sodium is the most reactive out of the group, followed by lithium. Then we have barium and radium left. Radium is slightly more reactive than barium due to its position, so it is third and barium is fourth.


What is the group trend for the ionization energy for the alkali metals?

As you go down the group (any group), ionization energy decreases. So in terms of ionization energy, for the alkali metals, Lithium > Sodium > Potassium > Rubidium > Caesium > Francium


What is the periodic trend for reactivity of metals?

Metals Period - reactivity decreases as you go from left to right across a period.Group - reactivity increases as you go down a group Why? The farther to the left and down the periodic chart you go, the easier it is for electrons to be given or taken away, resulting in higher reactivity.Non-metals Period - reactivity increases as you go from the left to the right across a period.Group - reactivity decreases as you go down the group. Why? The farther right and up you go on the periodic table, the higher the electronegativity, resulting in a more vigorous exchange of electron.


What element that will most easily lose an electron.?

The Alkali Metals, which are the elements in Group 1 of the periodic table, each have one lone electron in their valence shell. And each of these elements wants to get rid of that single electron. These metals, which include lithium, sodium, potassium, rubidium, caesium and francium, are the most likely to lose electrons.


How is the reactivity of metals related to the periodic table?

In the alkali metals column (Group 1), atomic radius increases down the group and reactivity increases. There are more shells preventing the attraction between the positive nucleus and negatively charged outer electron. (All Group 1 elements have 1 electron in their outer shell). Also, because they contain more shells down the group, the distance between the nucleus and electrons is increased. Therefore the electrostatic force is lessened between them. Both of these allow the outer electron to be lost easier to other elements, thus increasing reactivity.


Are the waves produced by the magnesium ion flame test of a higher or a lower frequency than the visible spectrum?

For the alkali metals, higher atomic number results in a lower wavelength flame test color. If the alkali earth metals follow the same trend then magnesium should have a higher wavelength (LOWER FREQUENCY) than the visible spectrum.


What does the order of discovery suggest about the trend in reactivity of the elements in group 0?

it is less common


Which elements are in the same group?

A group in the Periodic Table fits into a vertical column, so the first column is group 1, the alkali metals, lithium, sodium, potassium etc. They are grouped according to their abilities to combine with other elements, in other words there will be a common theme to their behaviour. So all the metals in group 1 will react with water in the same way, but you will see a trend as the behaviour shifts in nature down the group. In group 1 the reactivity increases down the group, so the metals fizz more vigorously when dropped into water.


Which trend decreases for metals down a group atomic radiusreactivity or melting point?

Melting points generally decrease as you go down a group for group I and group II metals. This does not apply to the transition metals. Reactivity of metals increases down a group due to a larger size and less effective charge between the nucleus and valence electrons. Atomic radius increases due to a higher principle number of electrons.


Why sodium is more reactive than potassium?

The atomic radius of potassium is greater than that of sodium. Therefore, the single valence electron that exists for all alkali metals is located farther from the nucleus for potassium than sodium. This results in less energy required to remove that valence electron from potassium than from sodium, leading to increased reactivity. Note that this trend continues as you move down Group I on the Periodic Table, meaning that Rubidium is more reactive than Potassium and Cesium is more reactive than Rubidium.


Which trend decreases for metals down a group?

Melting Point


What is the trend for first ionization energy for the alkali metals?

Within the alkali metals, or group 1, the ionization energy trend is that ionization energy decreases as you move down the group from top to bottom. This is because with each step down, you add an energy level, therefore the one valence electron is farther and farther from the atom's nucleus. So, the attraction between the nucleus and that electron (its electronegativity) decreases. This makes it easier (requires less energy), making the element more reactive. For example, cesium is more reactive than rubidium, which is more reactive than potassium, which is more reactive than sodium...