distance
wavelenght is the distance between the 2 peaks in sound waves and can be calculated by Wavelenght is = wave speed/ frequency or wave speed __________ frequency
No radio waves do.
I suppose you're talking about small wavelenght or large wavelength. In this case, the answer is that a wave with lower wavelenght has more energy than a wave with higher wavelenght.You have to consider that the energy associated to an electromagnetic wave is, according to de Broglie:E = hfwhere h is the Planck constant (which is, more or less, h = 6.626·10-34 Js) and f is the frequency of the wave. The relationship between frequency and wavelenght is given byf = c/lambdawhere c is the speed of light and lambda the wavelenght. So finally you haveE = hc/lambdaAccording to this equation, the higher the wavelenght, the lower the energy.
I suppose you're talking about small wavelenght or large wavelength. In this case, the answer is that a wave with lower wavelenght has more energy than a wave with higher wavelenght.You have to consider that the energy associated to an electromagnetic wave is, according to de Broglie:E = hfwhere h is the Planck constant (which is, more or less, h = 6.626·10-34 Js) and f is the frequency of the wave. The relationship between frequency and wavelenght is given byf = c/lambdawhere c is the speed of light and lambda the wavelenght. So finally you haveE = hc/lambdaAccording to this equation, the higher the wavelenght, the lower the energy.
vfbvgbnghb
what describes a electromagnectic wave with a long wavelengnth
I suppose you're talking about small wavelenght or large wavelength. In this case, the answer is that a wave with lower wavelenght has more energy than a wave with higher wavelenght.You have to consider that the energy associated to an electromagnetic wave is, according to de Broglie:E = hfwhere h is the Planck constant (which is, more or less, h = 6.626·10-34 Js) and f is the frequency of the wave. The relationship between frequency and wavelenght is given byf = c/lambdawhere c is the speed of light and lambda the wavelenght. So finally you haveE = hc/lambdaAccording to this equation, the higher the wavelenght, the lower the energy.
it is a distance between repeating units of a propagating wave of a given frequency..
You need to know it speed, wavelenght and its frequency.
A wave with a shorter wavelength carries more energy than a wave with a longer wavelength. This is because shorter wavelengths have higher frequencies, which means they have more oscillations per unit time, resulting in more energy being transferred by the wave.
Dispersion.
It measures the length of a wave, from peak to peak or trough to trough.