All of them.
The relative strength of its gravitational pull is directly proportional to the planet's mass.
YES
well depends what planet you are on the basic formulae is as follows weight = mass X gravitational field (gravitational pull) on each planet so depending on what planet you wish to know ill put int the answer . Mercury gravitational pull is 3.7 so its 3.7kg Venus gravitational pull is 8.8 so its 8.8kg Earth gravitational pull is 9.8 so its 9.8kg Mars gravitational pull is 3.7 so its 3.7kg Jupiter gravitational pull is 23.2 so its 23.2kg Saturn gravitational pull is 9.0 so its 9kg Uranus gravitational pull is 8.7 so its 8.7kg Neptune gravitational pull is 11.1 so its 11.1kg Pluto gravitational pull is 0.6 600g
Planet Earth.
The gravitational pull of the Sun
jupiter
True. The gravitational force between two planets is directly proportional to the product of their masses. So, the greater the mass of a planet, the stronger its gravitational pull towards another planet.
You have the same mass anywhere, but you weigh more or less on a planet depending on the gravitaional pull of the planet. The more gravitational pull, the more you weigh. The gravitational pull depends on the size of the planet. The bigger the planet, the more gravitaional pull.
The planet and the moon(s) gravitational pull
It does not.
The planet with the third-biggest gravitational pull is Uranus.
The gravitational force acting on the planet is much greater than the gravitational force acting on the moon due to the planet. This is because the planet has a significantly larger mass than the moon, resulting in a stronger gravitational pull on the moon towards the planet.