answersLogoWhite

0

ruler

tracing paper

those are the wrong answers its Straightedge & Compass

What else can I help you with?

Related Questions

Which tools did the Greeks not use in their formal geometric constructions?

The ancient Greeks did not use measuring tools such as rulers or protractors in their formal geometric constructions. Instead, they relied on a compass for drawing circles and a straightedge for creating straight lines. Their constructions were based on pure geometric principles, emphasizing the use of these two simple tools to achieve precise results without any measurements.


What tools weren't used by Greeks in their formal geometric constructions?

In their formal geometric constructions, the Greeks did not use tools such as a ruler or measuring device for measuring lengths, as they relied solely on the compass and straightedge. These tools were used to create geometric figures through drawing and intersection methods without the need for measurement. The prohibition of any form of measurement was a fundamental aspect of their geometric approach, emphasizing pure construction over numerical precision.


What tools did the Greeks not use in geometric constructions?

Tracing paper, ruler.


What tools did Greek not use in geometric constructions?

Tracing paper, ruler.


What tools are necessary when doing geometric constructions?

When performing geometric constructions, the essential tools are a compass, a straightedge (ruler without markings), and a pencil. The compass is used to draw circles and arcs, while the straightedge helps create straight lines between points. These tools allow for precise constructions based on classical geometric principles without relying on measurements. Additionally, paper is needed to carry out the constructions.


Using a straightedge and compass the ancient Greeks were able to construct many geometric objects.thing?

The ancient Greeks utilized a straightedge and compass to construct various geometric figures, including triangles, circles, and polygons. These tools allowed for precise constructions based on fundamental geometric principles, such as the ability to create bisectors, perpendiculars, and inscribed shapes. Notable constructions included the division of a line segment into equal parts and the construction of regular polygons, like the pentagon. However, certain problems, such as squaring the circle, were proven impossible with these tools alone.


Which of the following constructions were never accomplished by the Greeks with only a straightedge and compass?

Squaring the circle, duplicating the cube, and trisecting an angle were constructions that were never accomplished by the Greeks with only a straightedge and compass. These are known as the three classical geometric problems that cannot be solved using only those tools.


What tools did Greeks use in geometric construction?

A straightedge and compass.


Did Greeks use a eraser in geometric constructions?

In ancient Greece, mathematicians did not use erasers in their geometric constructions. Instead, they relied on precise tools like the compass and straightedge and emphasized the importance of creating accurate diagrams without correction. If a mistake was made, they typically started over rather than erasing. This practice reflected their philosophical views on the nature of mathematical truth and the process of discovery.


What tools did the greek use in geometric constructions?

A straightedge and compass.


Which item is allowed in constructing a geometric figure?

In constructing a geometric figure, a straightedge or ruler is typically allowed for drawing straight lines, while a compass is used for creating arcs and circles. These tools enable precise constructions based on geometric principles. Other items, such as pencils and erasers, are also commonly used for drafting and refining the figure. However, measurements and calculations using a protractor or measuring tools are generally not permitted in classical geometric constructions.


Given only a compass and straightedge Greeks were able to construct only regular polygons and circles thus leaving many constructions impossible to complete.?

The Greeks, using only a compass and straightedge, could construct regular polygons and circles due to their ability to create precise geometric figures based on certain mathematical principles. However, some constructions, like trisecting an arbitrary angle or duplicating a cube, were proven impossible within these constraints, as they required the solution of cubic equations or other geometric constructs unattainable with just those tools. This limitation revealed the boundaries of classical geometric constructions and led to deeper explorations in mathematics. Ultimately, these challenges contributed to the development of modern algebra and geometry.