He wrote a paper that described the photoelectric effect. The paper contained equations used to explain why certain wavelengths of light cause the p-e effect but others do not and the energy changes in the electrons during the p-e effect.
Albert Einstein's contribution to our understanding of the photoelectric effect was to explain it using the concept of quantized light energy in his 1905 paper on the photoelectric effect. He proposed that light is composed of discrete packets of energy known as photons, and that the intensity of light determines the number of photons but not their energy. This work helped lay the foundation for the development of quantum mechanics.
He wrote a paper that described the photoelectric effect. The paper contained equations used to explain why certain wavelengths of light cause the p-e effect but others do not and the energy changes in the electrons during the p-e effect.
he described light as little packets called photons
Einstein's explanation of the photoelectric effect stated that light behaves as discrete packets of energy called photons. This implied that light can exhibit both wave-like and particle-like properties, revolutionizing our understanding of the nature of light.
Albert Einstein's contribution to the understanding of the photoelectric effect was to propose that light is quantized into discrete particles called photons. This theory explained how light can eject electrons from a material, leading to the development of quantum mechanics. Einstein's work was crucial in advancing our understanding of light-matter interactions at the atomic level.
He wrote a paper that described the photoelectric effect. The paper contained equations used to explain why certain wavelengths of light cause the p-e effect but others do not and the energy changes in the electrons during the p-e effect.
Albert Einstein contributed to our understanding of the photoelectric effect by proposing that light is made up of quanta of energy known as photons. He explained that the photoelectric effect occurs when photons strike a material and transfer their energy to electrons, causing them to be emitted from the material. This work helped lay the foundation for the development of quantum mechanics.
Albert Einstein's contribution to the photoelectric effect was in explaining it by proposing that light is composed of discrete packets of energy called photons. This helped to understand how light can knock electrons out of a material, leading to the development of the field of quantum mechanics.
He was the first one to successfully explain this effect, and thus created the basic form of what became modern Quantum Mechanics (a theory that in its final form he rejected because it is probabilistic not deterministic).Note: Einstein did not receive his Nobel Prize for Relativity, but for his work on Brownian Motion and the Photoelectric Effect.
The wave nature of light helps explain the phenomenon of interference observed in the photoelectric effect. When light waves interact with a material, interference can either enhance or diminish the ability of photons to eject electrons. This interference phenomenon is a key aspect of understanding the photoelectric effect.
Special Relativity, General Relativity and the beginnings of Quantum. (understanding the photoelectric effect for example).
conditions of photoelectric effect