3:1
The ratio of dominant to recessive phenotype in the F2 generation of Mendel's experiment was 3:1. This means that for every 3 individuals expressing the dominant trait, there was 1 individual expressing the recessive trait.
All of the F1 generation are heterozygous, therefore 100% exhibit the dominant phenotype. The F2 generation has a ratio of 1 homozygous dominant: 2 heterozygous: 1 homozygous recessive. This results in a phenotypic ratio of 3 dominant: 1 recessive.
All of the F1 generation are heterozygous, therefore 100% exhibit the dominant phenotype. The F2 generation has a ratio of 1 homozygous dominant: 2 heterozygous: 1 homozygous recessive. This results in a phenotypic ratio of 3 dominant: 1 recessive.
The recessive trait phenotype disappears in a one-trait test cross in the F1 generation. This phenotype can reappear in the F2 generation.
No genes disappear in the F1 generation. Each of the F1 plants was heterozygous, having both dominant and recessive alleles. The recessive phenotype disappears in the F1 generation because all members of that generation carry a dominant allele. In the F2 generation, the recessive phenotype will reappear.
3:1
To determine which alleles are recessive in the seed phenotype, you would need to compare the phenotype of the plants with known dominant phenotypes. Typically, if a phenotype appears in a generation that resembles the parents but differs from the dominant traits, those traits associated with the appearance of phenotype "a" are likely recessive. Observing the inheritance patterns in subsequent generations can further clarify which alleles are recessive based on the phenotypes that re-emerge when homozygous recessive individuals are bred.
No genes disappear in the F1 generation. Each of the F1 plants was heterozygous, having both a dominant and recessive alleles. The recessive phenotype disappears in the F1 generation because all members of that generation carry a dominant allele. In the F2 generation, the recessive phenotype will reappear.
No. Parents with the dominant phenotype might be heterozygous in their genotype. This means they could carry both the dominant and recessive allele for a trait. So they could both pass the recessive allele to an offspring, who would then have the homozygous recessive genotype and recessive phenotype.
dominant
A recessive gene or gene combination can be present in a generation without affecting the phenotype if it is masked by a dominant gene. This means that the trait associated with the recessive gene will only be expressed if an individual inherits two copies of the recessive gene.
He would have the recessive phenotype for that trait.