It means that there will be more particles of the reactants in the vessel, so they are more crowded and collisions of the right energy are more likely.
or
collisions of the right energy are more likely.
Rate dependence on the concentration of reactants refers to how the rate of a reaction is affected by changes in the concentration of the reactants. The rate of many reactions is directly proportional to the concentration of the reactants, following a rate law equation. Increasing the concentration of reactants generally leads to an increase in the rate of the reaction, while decreasing the concentration typically results in a slower reaction rate.
raising the temperature of the reactants, by increasing their surface area, by increasing the concentration of reactants, by stirring the reactants, or by adding a catalytic agent can increase reaction rates
One can increase the rate of a chemical reaction by increasing the temperature, concentration of reactants, surface area of reactants, or using a catalyst.
Adding NO to the system at equilibrium would increase the concentration of the NO product. According to Le Chatelier's principle, the system will counteract this change by producing more of the reactants, N2 and O2.
The rate law describes the relationship between the concentration of reactants and the rate of a chemical reaction. Generally, an increase in the concentration of reactants will lead to a proportional increase in the reaction rate if the reaction is first order with respect to that reactant. For example, if the rate law is rate = k[A]^2, doubling the concentration of A would quadruple the reaction rate.
I dont know really
raising the temperature of the reactants, by increasing their surface area, by increasing the concentration of reactants, by stirring the reactants, or by adding a catalytic agent can increase reaction rates
Rate dependence on the concentration of reactants refers to how the rate of a reaction is affected by changes in the concentration of the reactants. The rate of many reactions is directly proportional to the concentration of the reactants, following a rate law equation. Increasing the concentration of reactants generally leads to an increase in the rate of the reaction, while decreasing the concentration typically results in a slower reaction rate.
For most reactions which involve liquids or gases, increasing the concentration of the reactants also increases the rate of reaction. This is because the number of effective collisions are also increased which speeds up the reaction.
raising the temperature of the reactants, by increasing their surface area, by increasing the concentration of reactants, by stirring the reactants, or by adding a catalytic agent can increase reaction rates
Concentration of products would increase in order to attain equilibrium in the system again.For example:H2CO3 --> H+ + HCO3-K= ([H+][žHCO3-])/([H2CO3])K is constant for this process, so if you increase the concentration of reactants (H2CO3), in order for K to stay the same, concentration of products (H+, HCO3-) would also have to increase.It's part of Le Chatelier's principle: "If a chemical system at equilibrium experiences a change in concentration, temperature, volume, or partial pressure, then the equilibrium shifts to counteract the imposed change and a new equilibrium is established."So, in your case, adding more reactant would cause equilibrium to shift to the right (toward products), and therefore, their concentration would increase so that new equilibrium could be established.
One can increase the rate of a chemical reaction by increasing the temperature, concentration of reactants, surface area of reactants, or using a catalyst.
For most reactions which involve liquids or gases, increasing the concentration of the reactants also increases the rate of reaction. This is because the number of effective collisions are also increased which speeds up the reaction.
Adding NO to the system at equilibrium would increase the concentration of the NO product. According to Le Chatelier's principle, the system will counteract this change by producing more of the reactants, N2 and O2.
When the volume of the reaction system is decreased, the equilibrium will shift towards the side of the reaction with fewer moles of gas to relieve the pressure. This causes the concentration of reactants to increase in order to establish a new equilibrium.
The rate law describes the relationship between the concentration of reactants and the rate of a chemical reaction. Generally, an increase in the concentration of reactants will lead to a proportional increase in the reaction rate if the reaction is first order with respect to that reactant. For example, if the rate law is rate = k[A]^2, doubling the concentration of A would quadruple the reaction rate.
The effect of concentration of reactants on rate of reaction depends on the ORDER of the reaction. For many reactions, as the concentration of reactants increases, the rate of reaction increases. There are exceptions however, for example a zero order reaction where the rate of reaction does not change with a change in the concentration of a reactant.