Efflux via active transport
Swett
active transport
Sodium is pumped out of a nerve cell through the action of the sodium-potassium pump, which uses energy in the form of ATP to actively transport sodium ions out of the cell and potassium ions into the cell. This process helps maintain the cell's resting membrane potential and is crucial for nerve cell function.
i do not know help me
Active transport
When sodium is pumped out of the cell by the sodium-potassium pump, it helps maintain the cell's resting membrane potential by generating an electrochemical gradient. This process also helps regulate cell volume and is essential for proper nerve and muscle function.
Sodium ions and potassium ions are pumped in opposite directions. Sodium ions are pumped out of the cell and potassium ions are pumped into the cell.
It is called Active Transportthis is Active Transport
No. Three sodium ions are pumped out of the neuron by the sodium-potassium pump and two potassium ions enter the cell. This way you maintain a slightly negative charge just inside the cell membrane.
during action potentials, sodium and potassium cross the membrane of the synapse after the threshold of membrane potential is reached. There, sodium leaves the synapse and the membrane potential is now positive. this is known as depolarization. then during repolarization, the sodium channels close and the potassium channels open to stabilize the membrane potential. during this time, a second action potential cannot occur and this is an evolutionary advantage because it allows rest in the nerve cells and it allows the membrane potential to equalize.
This statement is incorrect. The sodium-potassium pump is a type of active transport protein that uses energy in the form of ATP to pump sodium ions out of the cell and potassium ions into the cell against their respective concentration gradients. This process is essential for maintaining the proper balance of ions within cells.
my diq