depend on how big or small the object is, the greater the more gravtational pull it has, smaller the object is less gravatational pull it has. if the object changes mass well that when the gravitatonal pull becomes either stronger or weaker, but all depends.
The weight of the object would change if gravity changes. cw: Yes, if the FORCE of gravity changes, the FORCE of the object in the downward direction changes.
Yes, weight is directly proportional to the force of gravity acting on an object. If the force of gravity changes, the weight of the object will also change accordingly.
The mass of an object doesn't depend on the gravitational force on the object.
An object's weight
No, an object's mass remains constant regardless of changes in gravity. Mass is an intrinsic property of an object and is not affected by the gravitational force acting on it. However, an object's weight, which is the force exerted by gravity on the object, will change with variations in gravitational pull.
Ok what is your query?
When gravity changes, the mass of an object remains the same. However, its weight would vary depending on the strength of gravity.
When weight changes due to gravity, mass remains the same. Mass is the amount of matter in an object, while weight is the force exerted on an object due to gravity. So, when the gravitational force changes, the weight of an object changes, but its mass remains constant.
weight is defined as the product of mass and gravity constant. as the value of gravity changes weight is also changed
Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.
I suppose you are asking about what forces change when acceleration due to gravity changes. In this case, the formula for forces concerning acceleration due to gravity is as such: fg=mg. When acceleration due to gravity(g) changes, it affects the force of gravity which is also known as the weight of the object. This is shown as fg.
friction and gravity