It is used in optical fibers. It is also the reason we see a rainbow and why diamonds have their brilliance.
you can demonstrate total internal reflection using a light source and glass gratings.
Total Internal Reflection
what is the meant by total internal reflection
Total internal reflection occurs in a prism when light traveling through the prism hits the boundary between the prism and the surrounding medium at an angle greater than the critical angle. This causes the light to reflect back into the prism instead of refracting out of it, resulting in total internal reflection.
No, concave lenses do not exhibit total internal reflection. Total internal reflection occurs when light traveling through a medium encounters a boundary with a lower refractive index at an angle greater than the critical angle. Concave lenses are designed to converge light rays, whereas total internal reflection typically occurs at interfaces like air-water or glass-air.
because of total internal reflection
The so-called "total internal reflection".
Total internal reflection is used in fiber optic communication systems, where light signals are transmitted through optical fibers by reflecting off the inner walls due to total internal reflection. It is also used in prism-based devices like binoculars and periscopes to redirect light and form images. Additionally, total internal reflection is utilized in diamond jewelry to enhance its brilliance and sparkle.
Optical fibers use total internal reflection to guide light signals for telecommunications and internet connectivity. Reflecting prisms in binoculars and periscopes use total internal reflection to redirect light without losing brightness. Reflecting mirrors in digital projectors use total internal reflection to display images onto a screen. Diamond gemstones sparkle due to total internal reflection within the stone. Some sensors and detectors employ total internal reflection to detect changes in the refractive index or presence of substances.
Cause light rays rock
Simple - they don't. TIR occurs when there is no external angle that corresponds to the internal angle. Since the light has to originate outside of the raindrop, and the geometry is the same every time the light crosses the boundary, there is always an external angle corresponding to the internal one. Anybody who claims otherwise is confusing "*AN* internal reflection" with "total internal reflection."
because of total internal reflection of light on the earth's atmosphere