first-generation plants
dominant
dominant
A heterozygous genotype (e.g. Aa) is not true-breeding because it carries two different alleles for a trait and can produce offspring with different genotypes when crossed. True-breeding genotypes are homozygous for a particular trait (e.g. AA or aa) and will consistently produce offspring with the same genotype when crossed.
visual inspection of phenotypic traits.
The offspring of two true-breeding plants is also true-breeding, meaning they will consistently display the same traits as the parents. This is because true-breeding plants are homozygous for a particular trait, so when they are crossed, their offspring will also be homozygous for that trait.
If two true-breeding pea plants are crossed their offspring will show the dominant trait. The flowers will be purple or light purple.
When Mendel crossed true-breeding pea plants with different traits, he observed that the offspring in the first generation (F1) all displayed one of the parental traits. This led him to propose the Law of Dominance, which states that one trait will mask or dominate another in hybrids.
Dominant
Dominant
When Mendel crossed a true-breeding short plant with a true-breeding tall plant, all the offspring were tall. Which term describes the gene for tallness?
When Mendel crossed a true-breeding short plant with a true-breeding tall plant, all the offspring were tall. Which term describes the gene for tallness?
When Mendel crossed a true-breeding short plant with a true-breeding tall plant, all the offspring were tall. Which term describes the gene for tallness?