Deep underground from heat and pressure.
What are the four metamorphic rock producing processes
No. Metamorphic rock froms from processes that take place in the solid state. Rocks that form from molten material are igneous.
Most metamorphic processes take place deep within the Earth's crust or upper mantle, typically at depths between 10 and 50 kilometers. These processes are driven by heat, pressure, and chemical reactions that transform existing rocks into new types of rocks without completely melting them. Metamorphism often occurs at convergent plate boundaries where tectonic forces cause intense heat and pressure.
Because metamorphic rocks from very deep underground, they have to be brought to the surface by some geologic processes before they are exposed. There are many processes that could do this, but the most common is a mountain building event. Mountainous areas often have very large areas of exposed metamorphic rocks.
what processes must sedimentary rock go through to become a metamorphic rock
It is more likely that igneous and metamorphic, or igneous and sedimentary rocks would have something in common than sedimentary and metamorphic. The reason is because the processes involved in making metamorphic rocks is completely different than the processes needed to make sedimentary rocks. Only high temperature, high pressure minerals such as olivine, pyroxene, amphibole can withstand these kinds of conditions. Take quartz and feldspar, two of the most abundant minerals found in sedimentary rocks, these minerals would not be found in abundance in metamorphic rocks because they are not high temperature, high pressure rocks. But the most simple answer is that all the major groups of rocks are made of minerals. Metamorphic has high pressure and Igneous does to and both made from a particle called magma.
No, metamorphic rocks form over thousands to millions of years through the intense heat and pressure acting on existing rocks. The exact time it takes depends on the specific conditions present during the metamorphic process.
Heat and pressure change the rock into a metamorphic rock
It is more likely that igneous and metamorphic, or igneous and sedimentary rocks would have something in common than sedimentary and metamorphic. The reason is because the processes involved in making metamorphic rocks is completely different than the processes needed to make sedimentary rocks. Only high temperature, high pressure minerals such as olivine, pyroxene, amphibole can withstand these kinds of conditions. Take quartz and feldspar, two of the most abundant minerals found in sedimentary rocks, these minerals would not be found in abundance in metamorphic rocks because they are not high temperature, high pressure rocks. But the most simple answer is that all the major groups of rocks are made of minerals. Metamorphic has high pressure and Igneous does to and both made from a particle called magma.
It is more likely that igneous and metamorphic, or igneous and sedimentary rocks would have something in common than sedimentary and metamorphic. The reason is because the processes involved in making metamorphic rocks is completely different than the processes needed to make sedimentary rocks. Only high temperature, high pressure minerals such as olivine, pyroxene, amphibole can withstand these kinds of conditions. Take quartz and feldspar, two of the most abundant minerals found in sedimentary rocks, these minerals would not be found in abundance in metamorphic rocks because they are not high temperature, high pressure rocks. But the most simple answer is that all the major groups of rocks are made of minerals. Metamorphic has high pressure and Igneous does to and both made from a particle called magma.
It is more likely that igneous and metamorphic, or igneous and sedimentary rocks would have something in common than sedimentary and metamorphic. The reason is because the processes involved in making metamorphic rocks is completely different than the processes needed to make sedimentary rocks. Only high temperature, high pressure minerals such as olivine, pyroxene, amphibole can withstand these kinds of conditions. Take quartz and feldspar, two of the most abundant minerals found in sedimentary rocks, these minerals would not be found in abundance in metamorphic rocks because they are not high temperature, high pressure rocks. But the most simple answer is that all the major groups of rocks are made of minerals. Metamorphic has high pressure and Igneous does to and both made from a particle called magma.
nonliving processes of heating and pressurization.