Neutron stars could form in places where there are high-mass stars. After the star runs out of fuel in its core, the core collapses while the shell explodes into the space as supernova. The core would then become a neutron star, it might also become a black hole if it is massive enough.
Stars that are too massive to form neutron stars can undergo a supernova explosion and collapse into a black hole. This process occurs when the core of the star collapses under its own gravity, creating a region with infinite density and strong gravitational pull from which not even light can escape.
Some massive stars will become neutron stars. When massive stars die they will either become neutron stars or black holes depending on how much mass is left behind.
Mostly in galaxies, where they can form Super Massive Black Holes.
Yes, both black holes and neutron stars are remnants of the death of massive stars. Neutron stars form when the core of a massive star collapses but does not produce a black hole. Black holes are formed when the core of a massive star collapses beyond the neutron star stage.
No, black holes cannot turn into neutron stars. Neutron stars form from the remnants of supernova explosions of massive stars, while black holes are formed from the gravitational collapse of massive stars. Once a black hole is formed, it will remain a black hole and will not transform into a neutron star.
Stars that become white dwarfs die but become black holes . Neutron stars are born from a Super Nova that stored its energy and became a neutron star.
First [may be partial] is: A Cephid Variable Star. Quasars and other Gamma Ray sources [colliding Neutron Stars, and 'coalescing' Pairs of Black Holes for example] are also closely related.
No, not all neutron stars are pulsars. Pulsars are neutron stars that emit beams of radiation that are detectable from Earth as rapid pulses of light. While many neutron stars are pulsars, not all neutron stars exhibit this pulsing behavior.
A pulsar
No, not all neutron stars are pulsars. Pulsars are a type of neutron star that emits beams of radiation, which can be detected as pulses of light. Some neutron stars do not emit these beams and are not classified as pulsars.
Both white dwarfs and neutron stars are extremely dense remnants of the collapsed cores of dead stars.
That would be a collission between two neutron stars. Since many stars are actually double stars, this can happen now and then.