a cat stupid!!1
The formula for the work done by an electric field on a charged particle is given by W qEd, where W represents the work done, q is the charge of the particle, E is the electric field strength, and d is the distance the particle moves in the field.
The work done by an electric field on a charged particle as it moves through a given distance is equal to the product of the electric field strength, the charge of the particle, and the distance it moves in the direction of the field. This work done is measured in joules.
Yes.
you have to be 18
The work done by the electric field on a point charge is equal to the product of the charge and the change in electric potential energy.
Yes, the magnetic field is a non-conservative field. This means that the work done by a magnetic field on a charged particle moving in a closed path is generally not zero, unlike a conservative field where work done in a closed path is zero.
The work done by an electric field on a charged particle can be calculated using the formula: Work = charge of the particle x electric field strength x distance moved. The work is positive if the electric field and the displacement are in the same direction, and negative if they are in opposite directions.
The work done by you to turn the electric dipole end for end in a uniform electric field depends on the initial orientation of the dipole with respect to the field. If the dipole is initially oriented such that its positive and negative charges are parallel to the electric field, then no net work is done as the electric field does not do any work on the dipole as the electric field lines do not transfer any energy. On the other hand, if the dipole is initially oriented such that its positive and negative charges are perpendicular to the electric field, then work is done by you to turn the dipole as the electric field exerts a force on the charges in the dipole in opposite directions, causing them to move in opposite directions. As a result, you have to do work to move the charges and turn the dipole.
The electric potential in a field is directly related to the work done in moving a charge within that field. The electric potential represents the amount of work needed to move a unit positive charge from one point to another in the field. The work done in moving a charge within the field is equal to the product of the charge and the change in electric potential between the two points.
Any job-assignment-task done in field out of office is called Fieldwork or Practical Work."
Work in the fields of Ancient Egypt was mainly done by the peasant farmers. On the estates of the nobles and the temple the work was often done by slaves.
When a charged particle is moved along an electric field line, it will experience a force in the direction of the field line. The work done on the particle depends on the distance it moves and the strength of the field. If the particle moves perpendicular to the field lines, then no work is done by the field.