The higher voltage need more resistance, from the formula W = V2 / R.
That means R = V2 / W.
So 220 v 100 W is 484 ohms, while 115 v 100 W is 132¼ ohms.
While Amps and Volts are both units of electrity, they are quite independant. Total electrical energy is measured in "watts". Amps * Volts = Watts. You can get 100 Watts with 10 Volts @ 10 Amps. You can get 100 Watts with 100 Volts @ 1 Amp. You can get 100 Watts with 1,000 Volts at 0.1 Amp. It's like asking, "How do you get water flow of 20 gallons per minute?" You COULD have a 3 ft diameter pipe with very low pressure, or you COULD have a 1/2 inch pipe with very HIGH pressure. Both could give you the desired 20 gallons per minute.
Watts = current x volts, so you have to multiply Kw value by 1000 to get watts, then divide by the applied voltage. examples. 2Kw kettle (U.S) current = 2 x1000 divided by 120, or 16.7 amps 2Kw kettle (UK) current = 2 x1000 divided by 240 or 8.35 amps 100 watt car amplifier current = 100 divided by 12 volts = 8.5amps
Watts = Amps * Volts Watts = 20 amps * 100 Volts Watts = 2000 2,000 Watts or 2k Watts
Watts = Amps * Volts Watts = 20 amps * 100 Volts Watts = 2000 2,000 Watts or 2k Watts
voltage is equal to resistance multiplyed by current. you have the 2 pieces of info, just multiply
No, the wattage is determined by the resistance of the filament in the light bulb. The formula to determine the wattage is Watts = Voltage (squared)/Resistance in Ohms. To find the resistance of a 120 volt light bulb use the formula, Resistance in Ohms = Voltage (squared)/Watts. So for a 100 watt bulb at 120 volts the resistance is 120 volts x 120 volts = 14400/100 = 144 ohms. For a 60 watt bulb at 120 volts the resistance is 120 volts x 120 volts = 14400/60 = 240 ohms. As you can see this holds true to Ohm's law, current is inversely proportional to the resistance of the circuit. The higher the resistance of a load, the harder it is for the current to flow. In this case less current results in less light being emitted from the filament in the light bulb.
If the 12V source can deliver 100 Ampere, then yes. If it can't, then no. (remember watts / volts = amps)
The wattage would be 500 watts. This is calculated by multiplying the amperage (5 amps) by the voltage (100 volts), resulting in 500 watts of power.
The resistance is simply the value of resistances of all electrical equipment connected in Parallel by all consumers in a big city.The answer is amazingly accurate, if we have the average power consumption (Megawatts-MW) figure from the power company at any time of the day.Suppose a big city is consuming 100-MW at a given time. Assuming we use 100 volts AC at consumer homes, then at any given moment the instantaneous resistance (R in ohms) of the city is simply given by the formula:Power(watts) = (Volts x Volts) / Resistance (R in ohms)..........or,P=V2/ R, therefore,R = V2/P (ohms)......... then,If:V=100 volts (ac)P= 100,000,000 wattsThen:R = 100 x 100 / 100,000,000 = 0.0001 (ohms)(make sure to use only watts, volts and ohms in the formula above).Good Luck !The resistance is simply the value of resistances of all electrical equipment connected in Parallel by all consumers in a big city.The answer is amazingly accurate, if we have the average power consumption (Megawatts-MW) figure from the power company at any time of the day.Suppose a big city is consuming 100-MW at a given time. Assuming we use 100 volts AC at consumer homes, then at any given moment the instantaneous resistance (R in ohms) of the city is simply given by the formula:Power(watts) = (Volts x Volts) / Resistance (R in ohms)..........or,P=V2/ R, therefore,R = V2/P (ohms)......... then,If:V=100 volts (ac)P= 100,000,000 wattsThen:R = 100 x 100 / 100,000,000 = 0.0001 (ohms)(make sure to use only watts, volts and ohms in the formula above).Good Luck !The resistance is simply the value of resistances of all electrical equipment connected in Parallel by all consumers in a big city.The answer is amazingly accurate, if we have the average power consumption (Megawatts-MW) figure from the power company at any time of the day.Suppose a big city is consuming 100-MW at a given time. Assuming we use 100 volts AC at consumer homes, then at any given moment the instantaneous resistance (R in ohms) of the city is simply given by the formula:Power(watts) = (Volts x Volts) / Resistance (R in ohms)..........or,P=V2/ R, therefore,R = V2/P (ohms)......... then,If:V=100 volts (ac)P= 100,000,000 wattsThen:R = 100 x 100 / 100,000,000 = 0.0001 (ohms)(make sure to use only watts, volts and ohms in the formula above).Good Luck !The resistance is simply the value of resistances of all electrical equipment connected in Parallel by all consumers in a big city.The answer is amazingly accurate, if we have the average power consumption (Megawatts-MW) figure from the power company at any time of the day.Suppose a big city is consuming 100-MW at a given time. Assuming we use 100 volts AC at consumer homes, then at any given moment the instantaneous resistance (R in ohms) of the city is simply given by the formula:Power(watts) = (Volts x Volts) / Resistance (R in ohms)..........or,P=V2/ R, therefore,R = V2/P (ohms)......... then,If:V=100 volts (ac)P= 100,000,000 wattsThen:R = 100 x 100 / 100,000,000 = 0.0001 (ohms)(make sure to use only watts, volts and ohms in the formula above).Good Luck !
The formula you are looking for is I = W/E. Amps = Watts/Volts.
Watts are amps x volts, so w/o the volts the question can't be answered. At 100 volts it'd be 15 amps.
This will still only produce 12 volts. It will produce 1200 watts. watts is the result of Volts times Amps.