Splitting H2O (Apex)
Water is split to have its electrons replace the excited electron of chlorophyll, then enters photosystem II.
Splitting H2O (Apex)
Plastocyanin is a copper-containing protein that plays a crucial role in photosynthesis by shuttling electrons between photosystem II and photosystem I in the thylakoid membrane of chloroplasts. It helps in the transfer of electrons during the light-dependent reactions of photosynthesis.
Light energy is not exactly trapped. The light energy excites the electron in the reaction centres of photosystem I and photosystem II. The electron excites and transfers to the electron transport chain ( chain of electron carriers), this produces ATP. Then the electron of photosystem II is transferred by photosystem I and the electron of the photosystem I is used with H+ and NADP to form NADPH. Photosystem II gets back an electron from photolysis of water.
The role of Photosystem II in the light reaction of photosynthesis is to absorb photons of light energy and use it to oxidize water molecules, releasing electrons and protons in the process. These electrons are then passed down an electron transport chain to produce ATP and NADPH for the Calvin cycle.
Water is split to have its electrons replace the excited electron of chlorophyll, then enters photosystem II.
Photosystem I absorbs light best at a wavelength of 700 nm, while Photosystem II absorbs light best at a wavelength of 680 nm. Photosystem I transfers electrons to reduce NADP+ to NADPH, while Photosystem II replenishes electrons lost in the process of photosynthesis. Both photosystems work together in the light-dependent reactions of photosynthesis to ultimately produce ATP and NADPH.
Water participates directly in the light reactions of photosynthesis by donating electrons to photosystem II during the process of photolysis. These electrons are used to replace the ones lost by chlorophyll when it absorbs light energy, allowing the photosystem to continue absorbing light and generating ATP and NADPH for the Calvin cycle.
The cluster of light harvesting complexes in a thylakoid is called a photosystem. It consists of chlorophyll molecules and other pigments that absorb light energy and transfer it to reaction centers where photosynthesis takes place. Photosystem I and Photosystem II are the two main types found in the thylakoid membrane.
Splitting H2O
to make energy-carrier molecules like NADPH Apex
No. Photosystems I and II are where light-dependent reactions occur, while the Calvin Cycle is where light-independent reactions occur. Photosynthesis begins with Photosystem II, then Photosystem I, then the products from there go to the Calvin Cycle. (yes photosystem II comes before photosystem I)