answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: Who first found the direction of induced emf?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

Difference between back EMF and induced EMF?

An induced electromotive force (emf) is an induced voltage. Voltage (emf) causes current flow, and this induced voltage will cause a current that is called the induced current.We might also add that the induced current will cause a magnetic field to expand about the current path, and this field will "sweep" the conductor. The sweeping of the conductor by that expanding magnetic field will set up an emf that will oppose the emf that was creating it.CommentTechnically, there is no such thing as an 'induced current'. It is voltage that is induced. Any current flows as a result of that induced voltage being applied to a load. But that current is certainly NOT induced!


Does motional emf call induced emf?

yes indused emf is also called motional emf. If an open coil is subjected to a variable magnetic field, at the ends of the coil a potential difference is induced which is called induced emf. If a coil is connected to an emf source and switched on, the rising current will produced an variable magnetic field which in turn produces an emf. It is called back emf.


What are the Example each for self induced and mutually induced emf?

if an emf is induced in a coil due to the current flowing through itself is called SELF INDUCTANCE. on the other hand if an emf is induced on another coil due to the current flowing through the previous coil then it is called MUTUAL INDUCTANCE. suppose there are two coils A and B a current is flowing through A. now if the flux produced due to this current induce an emf on the same coil A, then it is SELF INDUCTANCE, and if it produce emf on B, then it is MUTUAL INDUCTANCE due to coil A.


What rule should you use in order to determine the direction of induced EMF in a coil?

The direction of an induced voltage is such that it always acts to oppose any change of current which causes it.So, for example, during the first quarter-cycle of a sine wave, when the current is increasing, the induced voltage acts oppose that change (increase) -in other words, it acts in the opposite direction to that current. During the second quarter-cycle of a sine wave, when the current is decreasing, the induced voltage again acts opposethat decrease that change (decrease) -in other words, it acts in the same direction to that current -trying to sustain that current.


Why induced current in a coil opposes the EMF producing it?

lenzs law

Related questions

The direction of statically induced emf can be found by which law?

Lenz's Law


What is Back emf of DC motor?

In dc motor, the armature conductors are revolving in the magnetic field and emf is induced in the armature conductors. The direction of the induced emf is in opposite direction to the applied voltage as per Flemings left hand rule. So, the induced emf in motor is called as back emf or counter emf. Vydehi


Is emf a scalar or vector quantity?

Emf has direction within a current loop, though it is not scalar. It's a bit between though as direction should be otherwise accounted for when discussing induced Emf. Not quite either.


What does the lenz law state?

The direction of an induced emf or current is such that the magnetic field created by the induced current opposes the change in magnetic flux that created the current.


What is the statment of lenz law?

The direction of an induced emf or current is such that the magnetic field created by the induced current opposes the change in magnetic flux that created the current.


Difference between back EMF and induced EMF?

An induced electromotive force (emf) is an induced voltage. Voltage (emf) causes current flow, and this induced voltage will cause a current that is called the induced current.We might also add that the induced current will cause a magnetic field to expand about the current path, and this field will "sweep" the conductor. The sweeping of the conductor by that expanding magnetic field will set up an emf that will oppose the emf that was creating it.CommentTechnically, there is no such thing as an 'induced current'. It is voltage that is induced. Any current flows as a result of that induced voltage being applied to a load. But that current is certainly NOT induced!


Does motional emf call induced emf?

yes indused emf is also called motional emf. If an open coil is subjected to a variable magnetic field, at the ends of the coil a potential difference is induced which is called induced emf. If a coil is connected to an emf source and switched on, the rising current will produced an variable magnetic field which in turn produces an emf. It is called back emf.


Can emf induced without an alternating magnetic flux?

No. EMF can only be induced in a wire by a varying magnetic flux. It does not have to be alternating, but it must be varying.


Difference between statically and dynamically induced emf?

STATICALLY INDUCED EMFThe emf induced in a coil due to change of flux linked with it (change of flux is by the increase or decrease in current) is called statically induced emf.Transformer is an example of statically induced emf. Here the windings are stationary,magnetic field is moving around the conductor and produces the emf.DYNAMICALLY INDUCED EMFThe emf induced in a coil due to relative motion of the conductor and the magnetic field is called dynamically induced emf.example:dc generator works on the principle of dynamically induced emf in the conductors which are housed in a revolving armature lying within magnetic field


How can you say that ac emf is induced in the coil?

When we place a current carrying conductor in a magnetic field emf is induced in a coil. we can knoe it by connecting voltmeter.


What are the Example each for self induced and mutually induced emf?

if an emf is induced in a coil due to the current flowing through itself is called SELF INDUCTANCE. on the other hand if an emf is induced on another coil due to the current flowing through the previous coil then it is called MUTUAL INDUCTANCE. suppose there are two coils A and B a current is flowing through A. now if the flux produced due to this current induce an emf on the same coil A, then it is SELF INDUCTANCE, and if it produce emf on B, then it is MUTUAL INDUCTANCE due to coil A.


How the process of change in magnetic flux causes induced emf?

According to Faraday's laws of electromagnetic induction, whenever a varving flux link with a conductor an emf is induced.