It depends on what you're doing and what you have available.
If you can find a good center tapped transformer with the target voltage, that will save you 2 diodes.
If you're going for the "quick and dirty" solution and you don't have a center tapped transformer, a bridge rectifier is an excellent way to get dirty DC.
ANSWER: The center tap will offer a .7 v advantage over the bridge. Be aware that power output does not change just the voltage increases
you only use half the number of windings in the bridge comparing it to the center tapped , and in the bridge rectifier the peak inverse voltage that a diode must be able to sustain without break down is half of that in the center tapped PIV per diode: center tapped: 2Vm : bridge : 1Vm
there is no need of bulky centre tap in a bridge rectifier. TUF(transformer utilisation factor) is considerably high. output is not grounded. diodes of a bridge rectifier are readily available in market. *the PIV(peak inverse voltage) for diodes in a bridge rectifier are only halfof that for a centre tapped full wave rectifier,which is of great advantage.
The center tapped full wave rectifier depends on two similar windings, each 180 degrees out of phase with respect to each other. You are only going to get that with a center tapped winding. Without the center tap, you need four diodes.
For a center tapped full wave rectifier transformer secondary gives a voltage that is 2Vm. For a bridge rectifier it is Vm.
A full-wave bridge rectifier with 4 diodes gives a dc output voltage equal to the average voltage of the whole transformer secondary. A FW rectifier with 2 diodes and a centre-tapped secondary gives an output voltage equal to the average voltage of half the secondary. If you have a 12-0-12 transformer, the bridge gives a 24 v output, while the 2-diode FW rectifier gives 12 v (approximately).
it is more preferable over center tapped rectifiers because you dont have to use special centre tapped transformer that has larger secondary windings thereby reducing the size and cost it also has another advantage by the use of 4 diodes i.e. peak voltage sustained by each diode is half of that sustained by the diodes in center tapped system that uses only 2 diode. thus lifespan of bridge type rectifier is more.
If diode in the bridge circuit becomes open the circuit will become a half wave rectifier instead, but if a diode in a full wave rectifier opens then the whole circuit becomes open. (No current flow). ************************************************************** The outputs of the bridge and the two-diode full wave rectifier are not the same. For the rectified voltage to be the same value, the two-diode full wave rectifier must be supplied from a centre tapped transformer winding, the total voltage of which is twice that necessary for the bridge rectifier circuit. Furthermore, the maximum d.c. which may be drawn from the centre tapped transformer/two-diode arrangement, assuming capacitive filtering, is the same value as the transformer secondary winding's capacity. In the case of the bridge, the maximum d.c. which may be drawn, also assuming capacitive filtering, is 62% of the transformer secondary winding's capacity.
Four diode rectifier not require a center tapped transformer.
A center-tapped transformer and two diodes can form a full-wave rectifier that allows both half-cycles of the AC waveform to contribute to the direct current, making it smoother than a half-wave rectifier. This form of circuit saves on rectifier diodes compared to a diode bridge, but has poorer utilization of the transformer windings. Hence we do not use centre tapping for full wave rectification.Ashish sharmaAstt. ProfessorHIET, Shahpur, kangra(H.P.)
A full-wave rectifier (sometimes called a "bridge" rectifier) produces output current on both half-cycles of the input AC waveform. ******************************************** There are two types of full wave rectifier circuit. One uses four diodes in a "bridge"configuration and is fed from a simple transformer winding. The other uses two diodes and needs to be fed from a centre tapped transformer winding.
A bridge rectifier will rectify both halves of a sine wave and give "continuous output" through 360 degrees of the input. Oh, and you don't need a center-tapped transformer to use it.
Yes, if the transformer output is center-tapped; otherwise, no, a bridge rectifier requires four diodes, or six for three phase power. More technically correct, what we are talking about is a full-wave rectifier. A bridge rectifier is properly always four or six diodes.