When a star dies the core collapses, but in most cases collapse stops at the level of either a white dwarf or a neutron star. The internal pressure of the remnant core is enough to stop further collapse. Only the most massive stars have strong enough gravity to overcome these forces and collapse into black holes.
No, black holes cannot turn into neutron stars. Neutron stars form from the remnants of supernova explosions of massive stars, while black holes are formed from the gravitational collapse of massive stars. Once a black hole is formed, it will remain a black hole and will not transform into a neutron star.
Stars that are too massive to form neutron stars can undergo a supernova explosion and collapse into a black hole. This process occurs when the core of the star collapses under its own gravity, creating a region with infinite density and strong gravitational pull from which not even light can escape.
No. Only the most massive stars form black holes. When the sun dies it will form a white dwarf.
Only stars that are much more massive than our sun can become a black hole. When the star dies, it explodes (called a supernova) and then gravitational collapse helps it to form a black hole.
Yes, both black holes and neutron stars are remnants of the death of massive stars. Neutron stars form when the core of a massive star collapses but does not produce a black hole. Black holes are formed when the core of a massive star collapses beyond the neutron star stage.
The Sun probably won't turn into a black hole. What determines whether a certain star becomes a black hole is basically the amount of mass left over, once the star runs out of energy. Less massive stars turn into white dwarves; more massive stars into neutron stars; and the most massive of all, into black holes.
Black holes are formed by super massive stars when they collapse. Less massive stars will form neutron stars. Therefore, the original size and mass of the star will determine if a black hole will be created when the star collapses.
Gases and stars and a massive central black hole.
Most massive stars will eventually form black holes after they go through their life cycle of burning through their nuclear fuel, leading to a supernova explosion. The remnants of the supernova collapse into a dense core, which, if above a certain mass threshold, will become a black hole due to the force of gravity overwhelming other forces.
False. Medium-sized stars become white dwarfs. Only the most massive stars form black holes.
black hole
Most black holes form when massive stars exhaust their fuel and their cores collapse. There are also supermassive black holes at the centers of most galaxies. Scientists are not sure how supermassive black holes form.