According to Bohr's theories the electrons in the metal ions are "excited" due to the absorption of a quantum or multiple quanta of light
electrons become excited
Electrons become excited in the electron transport chain due to the energy input from electron carrier molecules like NADH and FADH2. These electron carriers donate the electrons to the proteins in the chain, creating a flow of electrons that drives the production of ATP.
When a chlorophyll molecule absorbs a photon of light, Photons strike the "antenna" of the chlorophyll molecule. This causes electrons in the photo-reaction centers that are attached to the antennas to become excited and move to a higher energy level. That's photoexcitation. The valence electrons in Magnesium (part of the chlorophyl molecule) jump to an excited state.
Excited gases are gases that have absorbed energy through processes like heat or electrical currents, causing their atoms or molecules to become energized. This leads to the electrons within the gas atoms moving to higher energy levels. When these excited electrons return to their original (ground) state, they release energy in the form of light emission, giving gases their characteristic colors in phenomena like neon lights or auroras.
when light falls on the it its electrons become excited and become free for conductivity that's why selenium is a photo conductor
Ultraviolet Light
electrons become excited
Electrons become excited in the electron transport chain due to the energy input from electron carrier molecules like NADH and FADH2. These electron carriers donate the electrons to the proteins in the chain, creating a flow of electrons that drives the production of ATP.
When a chlorophyll molecule absorbs a photon of light, Photons strike the "antenna" of the chlorophyll molecule. This causes electrons in the photo-reaction centers that are attached to the antennas to become excited and move to a higher energy level. That's photoexcitation. The valence electrons in Magnesium (part of the chlorophyl molecule) jump to an excited state.
Electrons become excited when they absorb energy, such as from heat, light, or electricity. This extra energy causes the electrons to move to a higher energy level away from the nucleus of an atom, creating an excited state.
Electrons in photosystem II get their energy from sunlight. When photons from sunlight are absorbed by the chlorophyll molecules in the photosystem, the energy is transferred to electrons, allowing them to become excited and drive the process of photosynthesis.
Electrons from the magnetosphere can cause atoms to become excited or ionized when they interact with them. This can lead to the emission of light, changes in chemical reactions, or damage to biological molecules. Additionally, these electrons can contribute to the creation of auroras when they collide with gases in the Earth's atmosphere.
Electrons become excited when they absorb energy, such as through exposure to light or heat. This additional energy causes the electrons to move to a higher energy level, creating an excited state. The electrons will eventually release this energy by returning to their original, lower energy state, emitting light or heat in the process.
In photosystem II, the photon of light is absorbed by a pigment molecule, which causes an electron to become excited. This electron is then passed through a series of electron carrier molecules, creating a flow of electrons used to generate ATP and NADPH during the light-dependent reactions of photosynthesis.
Excited electrons in a chlorophyll molecule are transferred through a series of proteins in the thylakoid membrane, known as the electron transport chain, generating ATP and NADPH through the process of photosynthesis. These high-energy molecules will then be used in the Calvin cycle to produce glucose from carbon dioxide.
He said that electrons can become excited and begin to hop energy levels; when this happens an electron is in the excited state.
In very general terms, electron transfer is caused by photoexcitation of the pigment molecules in the antenna complex. The chlorophyll and carotenoid molecules in the antenna complex become photoexcited when they absorb any wavelengths of visible light and then transmit resonant energy.