well I dk geti don't know
Ionic compounds generally have higher melting and boiling points.
Ionic compounds have a higher melting point.
have lower melting and boiling points, exist as discrete molecules, and do not conduct electricity in the solid state.
Ionic compounds tend to have higher melting and boiling points compared to molecular compounds. This is because ionic bonds are generally stronger than the intermolecular forces present in molecular compounds, such as van der Waals forces. The strong electrostatic forces between ions in an ionic compound require more energy to overcome, leading to higher melting and boiling points.
Melting points of covalent compounds are generally lower than those of ionic compounds. This is because covalent compounds have weaker intermolecular forces compared to the strong electrostatic forces present in ionic compounds, so they require less energy to break apart the molecules.
Ionic compounds have a higher melting point.
Covalent compounds have lower melting points compared to ionic compounds because covalent bonds are generally weaker than ionic bonds. In covalent compounds, individual molecules or atoms are held together by shared electrons, which are weaker than the electrostatic attraction in ionic compounds. Hence, less energy is required to break the bonds in covalent compounds, resulting in lower melting points.
Ionic compounds have higher melting points than covalent compounds. Common table salt, sodium chloride, is an ionic compound and has a melting point of 801 oC. Table sugar, sucrose, a covalent compound, has a melting point of about 186 oC.
Generally, yes. Molecular compounds have weaker intermolecular forces compared to the strong electrostatic forces present in ionic compounds. This results in lower melting points for molecular compounds since less energy is required to break the intermolecular forces.
Ionic compounds generally have higher melting and boiling points.
Because they have interlocking electrons as the different elements' electrons have been 'tangled'
Highest melting point. (Note that this does not assure that the remaining compounds are not also ionic.)