Area of cross section: Resistance R is inversely proportional to the area of cross section ( A) of the conductor. This means R will decrease with increase in the area of conductor and vice versa. More area of conductor facilitates the flow of electric current through more area and thus decreases the resistance. This is the cause that thick copper wire creates less resistance to the electric current.
If the wire is short, its resistance will likely decrease. A shorter wire has less length for electrons to travel through, resulting in lower resistance according to the formula R = ρL/A, where R is resistance, ρ is resistivity, L is length, and A is cross-sectional area.
A thin wire will have higher resistance than a thick wire. This is because resistance is inversely proportional to the cross-sectional area of the wire - a thicker wire has a larger cross-sectional area compared to a thin wire, so it offers less resistance to the flow of current.
Thin wire.
Decreasing the length or increasing the thickness of the wire would cause its resistance to decrease.
A thin wire will have greater resistance than a thick wire of the same length. This is because resistance is inversely proportional to the cross-sectional area of the wire. Thinner wires have smaller cross-sectional areas, leading to higher resistance.
it has to do with ohms and the gauge of the wire. if you have a low ohms then you can't use a small thin wire. because the more ohms the more resistance. if you have a low omhs on a thin wire it can cause the wire to heat up. posibly catch fire.
The thermal resistance of a wire is proportional to ln(r2/r1), meaning that a thicker wire has a greater thermal resistance.
Increase the voltage applied to the wire. Decrease the resistance of the wire.
A long and thin wire made of a material with high resistivity and low conductivity would have the greatest electrical resistance. The resistance of a wire is directly proportional to its length and inversely proportional to its cross-sectional area, so a long, thin wire will have a greater resistance compared to a shorter, thicker wire.
Resistivity is a property of the material only, not of the dimensions of the wire. The resistance of a wire is the resistivity times the length divided by the cross-section area. So a long wire has more resistance, a thicker wire has less resistance, even if they are both made of copper with the same resistivity.
Decrease or reduction of voltage along the wire is called voltage drop. It is measure through wire and load resistance difference.
Electric resistance is greater in a long thin wire compared to a short fat wire, due to the higher resistance associated with longer wires and thinner cross-sectional areas. Resistance is determined by the material's properties and dimensions, with length and cross-sectional area being key factors affecting resistance.