You are answering your own question. It is like asking, "Why is water vapor wet?"
In electromagnetic waves, the electric field and magnetic field are perpendicular to each other and oscillate in sync. When the electric field changes, it creates a magnetic field, and vice versa. This relationship allows electromagnetic waves to propagate through space.
Electromagnetic waves are transverse (unpolarized or polarized) or circularly polarized waves that have some electrical properties and some magnetic properties. An electromagnetic wave consists of changing electric and magnetic fields. The repeated cyclic transfer of energy from the electric field (weakening it) to the magnetic field (strengthening it) until the electric field is gone, then from the magnetic field (weakening it) to the electric field (strengthening it) until the magnetic field is gone every cycle is the process by which electromagnetic waves propagate without requiring a medium (and is described in Maxwell's Equations).
Electric and magnetic fields are perpendicular to each other in electromagnetic waves. A change in the electric field generates a magnetic field, and a change in the magnetic field generates an electric field. They support each other and travel together in a wave-like fashion.
Electromagnetic waves are generated by the acceleration of charged particles, such as electrons, in an electric or magnetic field.
An electromagnetic wave, in its simplest description, is a wave that as it propagates keeps converting its magnetic field into an electric field while converting its electric field into a magnetic field.
Electromagnetic waves have both electrical and magnetic properties. These waves result from the oscillation of electric and magnetic fields perpendicular to each other and are able to travel through a vacuum. Examples of electromagnetic waves include light, radio waves, microwaves, and X-rays.
Electromagnetic waves are transverse (unpolarized or polarized) or circularly polarized waves that have some electrical properties and some magnetic properties. An electromagnetic wave consists of changing electric and magnetic fields. The repeated cyclic transfer of energy from the electric field (weakening it) to the magnetic field (strengthening it) until the electric field is gone, then from the magnetic field (weakening it) to the electric field (strengthening it) until the magnetic field is gone every cycle is the process by which electromagnetic waves propagate without requiring a medium (and is described in Maxwell's Equations).
Electromagnetic waves are created by vibrating electric charges. When an electric charge oscillates, it creates a changing electric field which in turn generates a changing magnetic field. This interplay of changing electric and magnetic fields propagates through space as electromagnetic waves.
In electromagnetic waves, the magnetic field and electric field are perpendicular to each other and oscillate in sync. When one field changes, it induces a change in the other field, creating a self-sustaining wave that propagates through space.
The key difference between the E field and H field in electromagnetic waves is that the E field represents the electric field, which is responsible for the electric force on charged particles, while the H field represents the magnetic field, which is responsible for the magnetic force on charged particles. In electromagnetic waves, these fields are perpendicular to each other and oscillate in phase.
No they are caused by changes in magnetic and electrical fields. When a magnetic field changes it causes an electric field that is perpendicular to it. And vice versa a changing electric field causes a perpendicular magnetic field. These changing fields propagate outwards at the speed of light and are what is meant by an electromagnetic wave.
Electromagnetic waves are generated by accelerating electric charges. When an electric charge is accelerated, it creates a changing electric field which, in turn, generates a changing magnetic field. These changing electric and magnetic fields propagate through space as electromagnetic waves.