Does it? See Related Links
it doesn't, the one with the highest resistance does
When more light bulbs are added to a parallel circuit, the total resistance decreases because each additional bulb provides an additional pathway for current to flow. This results in an increase in the overall current flowing through the circuit, as well as an increase in the total power consumed by the circuit.
The net effective resistance of the parallel devices is the reciprocal of (1/12 + 1/4). Hence 3 ohms.=============================================(Which actually looks strangely similar to the first answer above.Could it be just coincidence ? I wonder . . . )
The total resistance of the circuit increases. hence the new resistance after adding the resistance will be new resistance = old resistance + added Resistance There is a small mistake in the question. The second word is 'changes' not 'charges'
parallel circuit .
A parallel circuit is different in many ways from a series circuit: 1. In parallel, the voltage across all the devices connected is the same. 2. If a fault occurs in any device connected in parallel combo, then it has no effect on the operation of the other device. 3. In series circuit the current flowing through all the devices is the same while in case of the parallel one the voltage across all the devices is same.
The total resistance of a set of resistors in parallel is found by adding up the reciprocals of the resistance values, and then taking the reciprocal of the total. By removing a resistor the total current will lower. If you short out the parallel circuit as suggested it will take out the fuse that should be protecting the circuit.AnswerShorting-out a resistor in a parallel circuit, will act to short out the entire circuit, therefore, significantly increasing, not lowering, the current! And, as the previous answer indicates, this short-circuit current will operate any protective devices, such as a fuse.In a parallel circuit current does not lower but it will be increase if shorting-out one resistor in the two resistor parallel circuit, the circuit will become very low resistive and the larger current will flow through the short path.
A parallel circuit
In a parallel circuit the voltage across each component is the same.
Resistance in a circuit is its ohmic value of the circuit. It is comprised of all of the devices and components that make up the circuit. This also includes the wire that carries the voltage to the load of the circuit.
In a parallel circuit, current flows through multiple branches simultaneously. Each branch offers a separate path for the current to travel. This means that the total current in the circuit is divided among the branches based on their resistance. The implications of this are that devices connected in parallel receive the full voltage of the circuit, and if one branch is disrupted, the other branches can still function independently.
The generator sees a resistive load of 3.0 ohms.