answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: Why doesn't the action spectrum for photosynthesis exactly match the absorption spectrum of chlorophyll a?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Do leaves give food to flowers?

Not exactly food, but the chlorophyll within them absorbs sunlight through photosynthesis, and then provides energy through respiration.


Which letter identifies the structure that captures sunlight energy for photosynthesis?

not exactly sure but i think A chloroplast captures sun light and turns it into chlorophyll which is sugar (glucose) aka food. This process is called photosynthesis.


Why is the solar spectrum an absorption spectrum rather than an emission spectrum?

The sun has 3 layers - the photosphere, the chromosphere, the corona. Photosphere is the visible surface and gives the absorption spectrum. Chromosphere is the pinkish discharge encircling the Sun, visible only during a total eclipse. This gives the emission spectrum. Corona is the halo encircling the chromosphere. THis gives the coronal spectrum.


What parts of a plant have cells with chloroplasts in them?

The leaves are the only cells which contain chloroplasts, as an objective of the leaf is to absorb sunlight, which is exactly what the chloroplasts, or more specifically the chlorophyll in the chloroplasts do. The chloroplasts themselves are the organelles in which photosynthesis takes place.


Does sunlight cause photosynthesis?

It doesnt exactly trigger it, but sunlight is needed to complete the process Photosynthesis is powered up by light.It is very essential for photosynthesis


What are the three overhead absorption rates?

As far as I know there is only an overhead absorption rate and a full absorption rate. The alternative being marginal costing. There are 3 methods of absorption costing. These being Activity, Time and Efficiency but I'm not sure what you are asking exactly.


Is carbon dioxide as a waste describing photosynthesis?

I'm not exactly sure, but I'm almost 100% sure that it's respiration not photosynthesis


What would happen if plants do not contain chlorophyll?

chlorophyll being green, is absorbing the relatively low energy red light and reflecting the higher energy green. But even this sort of analysis depends on the properties of the incoming light. Chlorophyll would be better in the redder light of some stars and poorer in the bluer light of others.


Where exactly do you find photosynthesis?

Outside, I think you should go and look outside.


What coler in the visible light spectrum has the lowest frequency?

That would be the last color you can see on the red end of the spectrum. It's not exactly the same at all intensities or for all eyes.


Are specific spectrum of electromagnetic radiation the cause for color if true which causes which?

Not exactly. Different colors are different frequencies of light. "Spectrum", on the other hand, refers to an analysis of a mix of wavelengths.


Why are plants steams green?

Plants are green because they have a substance called chlorophyll in them. Understanding why chlorophyll is green requires a little biology, chemistry and physics. If we shine white light on chlorophyll, its molecules will absorb certain colors of light. The light that isn't absorbed is reflected, which is what our eyes see. A red apple appears red because the molecule of pigment in the apple's skin absorbs blue light, not red. Thus, we see red. Chlorophyll molecules absorb blue light and some red light. The other colors are reflected resulting in the green color that we associate with plants. Plants get their energy to grow through a process called photosynthesis. Large numbers of chlorophyll molecules acts as the antenna that actually harvest sunlight and start to convert it in to a useful form. Here's where the absorbent properties of the chlorophyll molecule come into play. It turns out that eons of evolutionary design have matched the absorbance of chlorophyll to the actual color of the sunlight that reaches the leaves. Sunlight consists of primarily blue and red light mixed together, which are exactly the colors that chlorophyll molecules like to absorb. Light is a form of energy, so the chlorophyll is able to harvest the sunlight with little waste.