C++ array indices are zero-based because the first element in any array is offset 0 elements from the start address. The second element is offset by 1 element and the third by 2 elements, and so on. To put it another way, the index refers to the number of elements that come before the desired element. The first element has zero elements before it, so it is index 0. For an array of n elements, the last element is at index n-1.
Index 2. All subscripts are zero-based in C++ because the first element (at index 0) is offset 0 elements from the first element while the second (index 1) is offset 1 element from the start, and so on. Given a vector of n elements, the valid subscripts are in the range 0 through n-1.
In C++, a for loop is structured as follows: for( int index = 0; index < 10; ++i ) { //do something }
In order to provide flexibility in modular operation.
sin(0) = 0 but, in general, the sine graph need not start at 0. For example, sin(x + 2) does not start at 0.
template<class T> void insertion_sort(T A[], size_t size) { if( size<2 ) return; for( size_t index=1; index<size; ++index) { T value = A[index]; size_t gap = index; size_t left = index-1; while( gap!=0 && value<A[left] ) A[gap--]=A[left--]; A[gap]=value; } }
#include<iostream> #include<iomanip> #include<time.h> template<typename T> size_t find(T& data, T a[], size_t size) { size_t index=0; do { if(a[index]==data) break; } while(++index<size); return(index); } template<typename T> void print(T a[], size_t size) { using std::cout; using std::endl; using std::setw; size_t index=0; do{ if(index&&index%20==0) cout<<endl; cout<<setw(3)<<a[index]; }while(++index<size); cout<<endl; } int main() { srand((unsigned)time(NULL)); const size_t size=100; unsigned int a[size]; size_t index=0; do{ unsigned int data=rand()%100; do{ data=rand()%100; } while(find(data,a,index)<index); a[index]=data; } while(++index<size); print(a,size); }
#include<iostream> #include<sstream> #include<vector> using namespace std; int main() { vector<int> Array; for (size_t index=0; index<9; ++index) { int i; bool valid = false; while (!valid) { cout << "Enter a number: "; string input; cin >> input; stringstream ss; ss << input; valid = (ss >> i); if (!valid) cout << "Invalid input.\n"; } Array.push_back (i); } // print array and average int average=0; for (size_t index=0; index<9; ++index) { cout << Array[index] << ' '; average += Array[index]; } average /= 10; cout << "\nAverage: " << average << endl; }
Answer: 0
In order to provide modulo (%) facilities as far as mathematics and logic is concern. for instance , if we have no of employees in our list say 1545 and if we want to accommodate it within small and effective range then by using % we can do it easily.... we can arrange it in the range within Array with maximum index 14 (0,1,2,.....14). And 0,15,30,45......1545 will belongs to same category say index no 0. Think if 0 is not included into index then where we would store 0,15,30,45....1530,1545 . From a technical standpoint, you need to understand that an array is basically just the starting address of a chunk of memory. The "index" of the array is actually an address offset. So the value at the 0th position would be stored at the address of the array plus zero. The value at the 1st position would be stored at the address plus one, and so on.
You start with 1 0r 0. one of them,......................I think............
#include<iostream> #include<iomanip> #include<time.h> void print(int a[], size_t size) { using std::cout; using std::endl; using std::setw; for(size_t index=0; index<size; ++index) cout<<setw(5)<<a[index]; cout<<endl; } int main() { srand((unsigned)time(NULL)); const size_t size=10; int a[size], b[size], c[size]; // Initialise a and b with random integers (range 1-99) for(size_t index=0; index<size; ++index) { a[index]=rand()%99+1; b[index]=rand()%99+1; } // Initialise c with products of a and b. for(size_t index=0; index<size; ++index) c[index]=a[index]*b[index]; // Calculate sum of c. int sum=0; for(size_t index=0; index<size; ++index) sum+=c[index]; // Print results. std::cout<<"Array a:\t"; print(a,size); std::cout<<"Array b:\t"; print(b,size); std::cout<<"Products:\t"; print(c,size); std::cout<<"Sum product:\t"<<sum<<std::endl; }
The dimensional formula for relative refractive index is [M^0 L^0 T^0].