answersLogoWhite

0


Best Answer

To preserve the conservation of; energy, momentum, and angular momentum in beta plus decay. Without the neutrino there is a measurable difference between the energy, momentum, and angular momentum of the initial and final particle. The neutrino rectifies this difference and it's existence was actually postulated before it was ever discovered!

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why is a neutrino released during positron emission?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

Why are protons converted into neutrons during positron emission?

Protons are converted into neutrons during positron emission to satisfy certain conservation laws, like charge and baryon number. The following reaction takes place during positron emission: p+ --> n + e+ + ve, where p+ is a proton, n is a neutron, e+ is a positron (antielectron), and ve is an electron neutrino. Charge is +1 on both sides of the reaction, and so is conserved. Baryonic number is 1 on both sides of the reaction (both the p+ and the n have baryonic numbers of 1), and so is conserved. Also, lepton number is 0 on both sides of the reaction (e+ has a lepton number of -1 while ve has one of +1, thus adding up to zero), and so is conserved.


What is a nuclear equation that shows the overall fusion cycle of the sun?

Nuclear fusion in sun is followed by proton proton chain reaction during this reaction hydrogen fused to form helium the main products of this reaction according to nuclear equation is - positron, neutrino, gamma ray photons, isotopes of hydrogen and helium


What type of particles is released during beta decay?

In beta- decay, an electron and an electron antineutrino is emitted. In beta+ decay, a positron and an electron neutrino is emitted. In both types of decay, if the nucleus is left in an excited state, when it comes back down to ground state, it emits a photon in the form of a gamma ray. In beta+ decay that is precipitated by K Capture, the electron cloud is left in a multi level excited state, and it has one or (usually) more drops in energy as it returns to ground state, each drop emitting a photon in the form of an x-ray.


Working principle of atomic emission spectroscopy?

An emission spectrum is the spectrum of frequencies of the electromagnetic radiation emitted (by an atom or molecule) during a transition from a high energy to a low energy level.


What is the importance of emission of electrons from chlorophyll during photosynthesis in plants?

they are carrying energy. that is why itis important.

Related questions

Why are protons converted into neutrons during positron emission?

Protons are converted into neutrons during positron emission to satisfy certain conservation laws, like charge and baryon number. The following reaction takes place during positron emission: p+ --> n + e+ + ve, where p+ is a proton, n is a neutron, e+ is a positron (antielectron), and ve is an electron neutrino. Charge is +1 on both sides of the reaction, and so is conserved. Baryonic number is 1 on both sides of the reaction (both the p+ and the n have baryonic numbers of 1), and so is conserved. Also, lepton number is 0 on both sides of the reaction (e+ has a lepton number of -1 while ve has one of +1, thus adding up to zero), and so is conserved.


Will there be an increase in mass during beta decay in nucleus?

If you are asking whether the nucleus' mass would increase, the answer is no. Beta decay involves emission of an electron from the nucleus. This happens when a neutron converts to a proton, an electron, and an anti-neutrino. A neutron is heavier than a proton, and the anti-neutrino carries away some energy with it, so the mass of the nucleus decreases.


What is the kind of decay that occurs when a nucleus releases a positron?

There is technically no such thing as positron decay. It's a misnomer. The nuclear decay process wherein a positron is emitted from a decaying nucleus is called positron emission or beta plus decay. A link is provided below that question and its answer.


What can positrons do?

Positrons are anti-electrons; they're antimatter. There are a couple of sources of positrons, and in our universe, the positron is looking for an electron to combine with so it can return from whence it came. This process, called mutual annihilation, sees the positron combine with the electron to produce two fairly high energy gamma rays (leaving the scene in opposite directions). In another universe, an antimatter one, the positron orbits around antimatter atomic nuclei. It also forms positricity in that universe. The positron is also used in medical imaging in positron emission tomography (PET) scans. The positron doesn't have a lot of penetrating power, and it won't travel far after it is released. But it is worth noting that those gamma rays that are released when a positron and an electron mutually annihilate each other are pretty high energy ones. They have a lot of penetrating power, and they can do considerable biological damage if a living thing is exposed to a positron source for too long. The PET scan only ends up "minimally exposing" an individual during the procedure, in case you're wondering. Links can be found below for more information.


During nuclear reaction two protons change into what?

In the nuclear fusion process in the sun, two protons change into a proton and a neutron, plus also a positron and a neutrino. This is part of the synthesis of helium and release of energy which powers the sun. You can see the complete chain of reaction at the link below


What is generated in the suns core?

Helium is generated in the core of our sun by nuclear synthesis .During the nuclear fusion inside the sun , hydrogen is fused into helium .the main products generated in this reaction are - Gamma ray photon, positron, neutrino, isotopes of hydrogen and helium and large amount of energy .


What is a nuclear equation that shows the overall fusion cycle of the sun?

Nuclear fusion in sun is followed by proton proton chain reaction during this reaction hydrogen fused to form helium the main products of this reaction according to nuclear equation is - positron, neutrino, gamma ray photons, isotopes of hydrogen and helium


Who postulated the existence of the neutrino?

Walter Baade and Fritz Zwicky proposed the existence of the neutron star in 1934. Antony Hewish and Samuel Okoye discovered "an unusual source of high radio brightness temperature in the Crab Nebula" in 1965, which turned out to be the Crab Nebula neutron star.


Atomic number increases by one during what type of radioactive decay?

Beta decays does. But alpha decay lowers it by 2.


The duct that transports sperm during emission?

its a duck


What would happen if a positron met an electron?

When a positron meets an electron, they annihilate or destroy each other.This phenomena is known as annihilation of matter. During this process two photons of gamma rays are produced that travel in opposite directions.Actually the mass of electron and positron has been converted into energy (gamma rays).


What happen during beta decay?

There are two types of beta decay: B- decay, and B+ decay. B- decay results in the emission of an electron (e-), while B+ decay results in the emission of a positron (e+). . B- decay occurs when the neutron in the nucleus of an atom converts into a proton and an electron. The resulting proton remains in the nucleus, while the electron is ejected form the nucleus, sometimes at high speed. This process releases energy, and therefore can occur spontaneously. . B+ decay occurs when energy is applied to a proton, and the resulting interaction causes the proton to convert into a neutron and a positron. The neutron remains captured in the nucleus, while the positron is ejected, sometimes at high speed. Note that B+ decay cannot occur spontaneously - it requires energy, usually in the form of a high speed colission with another particle.