In positron emission, the positron is produced from the nucleus of an atom when a proton is converted into a neutron and a positively charged positron. This process helps to make the nucleus more stable by decreasing the number of protons.
A positron is a positively charged electron. It's an antielectron - antimatter! The positron has a charge of +1 (just the opposite of the -1 of the electron), and a spin of 1/2 as an electron does. The mass of this elementary particle is about 9.103826 x 10-31 kg. The actual charge on this particle is about +1.602 x 10-19 coulombs. We write it as β+ or e+ in nuclear equations. It was Paul Dirac who first theorized that it may exist back in 1928, and in 1932, Carl D. Anderson discovered and named the positron. How was it done? By allowing cosmic rays to pass through a cloud chamber shielded with lead and set up in a magnetic field, the electron-positron pairs that were sometimes created could be observed. Once created, the particles moved (curved) in opposite directions within the magnetic field. Simple and clever! It should be noted that Caltech graduate student Chung-Yao Chao is credited with detecting the positron in 1930, but he was unable to explain it. We should also note that the positron is emitted (positron emission) in beta plus decay, which is a form of radioactive decay. Pair production, the "conversion" of electromagnetic energy into a positron and an electron, is also a source of positrons. Regardless of the source, the positron will always seek to "combine" with any nearby electron with the mass of both particles being converted into electromagnetic energy (a pair of gamma rays). A more detailed description and some of the other characteristics of the positron can be found in the Wikipedia article on that subject. A link is provided below to that post and also to some Related questions that will aid in understanding this critter.
Positrons are a type of beta radiation (along with electons). Let's check things out to figure out why some nuclei are positron emitters. Positron emission (beta + decay) follows after the conversion of a neutron in an atomic nucleus into a proton. In atomic nuclei that have an excess number of neutrons to be stable, this is a common form of decay. It directly assists an unstable nucleus in getting closer to the "line of stability" of the N-Z plot. As beta + decay has a higher probablity for nuclei with excessive numbers of neutrons, beta - decay has a higher probability for nuclei with shortages of neutrons. In general, alpha decay is reserved for the heaviest radionuclides. We see radium, uranium, plutonium and a number of other elements from the upper end of the periodic table as having alpha decay as a possibility among their methods of decay. Links can be found below.
Light can come from various sources, such as the sun, light bulbs, candles, or fires. It is created by the emission of electromagnetic radiation in the visible spectrum. When light hits an object, it can be absorbed, reflected, or transmitted, which is how we see things around us.
During nuclear decay when a beta- particle (a high energy electron coming from the decay event) leaves the nucleus, the action is the result of the transformation of a neutron into a proton and an electron (the beta- particle). Got links if you want them. They are to related articles posted by our friends at Wikipedia, where knowledge is free. Note: there is a bit more to beta decay than was mentioned here, but enough was presented to answer the question. Certainly it is hoped that the links will extend knowledge about as far as the average reader may wish to go.
upside down if you are further away from it from its focal point (the point where all reflected rays from it come together.)
Electrons being negatively charged will be attracted by the protons within the nucleus and so they come after spending energy against the force of attraction. But positron being positively charged will be repelled by positively charged portons. Hence the energy difference between electron and positron emission in case of beta decay
there is no atomic emission from the sun.
A positron is a positively charged electron. It's an antielectron - antimatter! The positron has a charge of +1 (just the opposite of the -1 of the electron), and a spin of 1/2 as an electron does. The mass of this elementary particle is about 9.103826 x 10-31 kg. The actual charge on this particle is about +1.602 x 10-19 coulombs. We write it as β+ or e+ in nuclear equations. It was Paul Dirac who first theorized that it may exist back in 1928, and in 1932, Carl D. Anderson discovered and named the positron. How was it done? By allowing cosmic rays to pass through a cloud chamber shielded with lead and set up in a magnetic field, the electron-positron pairs that were sometimes created could be observed. Once created, the particles moved (curved) in opposite directions within the magnetic field. Simple and clever! It should be noted that Caltech graduate student Chung-Yao Chao is credited with detecting the positron in 1930, but he was unable to explain it. We should also note that the positron is emitted (positron emission) in beta plus decay, which is a form of radioactive decay. Pair production, the "conversion" of electromagnetic energy into a positron and an electron, is also a source of positrons. Regardless of the source, the positron will always seek to "combine" with any nearby electron with the mass of both particles being converted into electromagnetic energy (a pair of gamma rays). A more detailed description and some of the other characteristics of the positron can be found in the Wikipedia article on that subject. A link is provided below to that post and also to some Related questions that will aid in understanding this critter.
No, a positron cannot react with a neutron in any kind of annihilation reaction. An electron and a positron can, and the same with a neutron and an anti-neutron, but it does not occur between a positron and a neutron.
Neither, a CAT scan is one where computers are used to synthesise an image, but the radiation used is usually X-rays, though positron emission can be used, in this case it will be using appropriate radiation sources. Fusion and fission don't come into it.
Positrons are a type of beta radiation (along with electons). Let's check things out to figure out why some nuclei are positron emitters. Positron emission (beta + decay) follows after the conversion of a neutron in an atomic nucleus into a proton. In atomic nuclei that have an excess number of neutrons to be stable, this is a common form of decay. It directly assists an unstable nucleus in getting closer to the "line of stability" of the N-Z plot. As beta + decay has a higher probablity for nuclei with excessive numbers of neutrons, beta - decay has a higher probability for nuclei with shortages of neutrons. In general, alpha decay is reserved for the heaviest radionuclides. We see radium, uranium, plutonium and a number of other elements from the upper end of the periodic table as having alpha decay as a possibility among their methods of decay. Links can be found below.
The oxygen atoms in O2 produced during photosynthesis come from water molecules (H2O) that are split during the light-dependent reactions in the chloroplasts of plant cells. This process, known as photolysis, releases oxygen as a byproduct.
Have vehicle scanned to determine the problem
yes but the urine will not come out through the vagina. Some fetishii are produced upon this fact
The wholes in Swiss Cheese come from gases produced by bacteria during the production of the cheese.
An electron is the carrier of the negative electrostatic force, and it has a charge of -1. Also, the electron, along with the proton and neutron, are the "basic building blocks" of atoms, and they make up the matter all around us. The positron, on the other hand, is an anti-electron - it's antimatter! And it is the antiparticle of the electron. It has a charge of +1, which is just the opposite of the electron's. The fact that the electron and positron are matter and anti-matter, and that they have a charge of -1 and +1 respectively are the major differences. A positron is an electron's anti-particle, and when the electron and positron come in contact with each other to combine, they annihilate each other in a process called electron-positron annihilation. There is a link below to that related question and to a couple of others.
Begin by removing the wiring harness. Remove the retaining screws. The emission control will come off. Reverse the process to install your new emission control.