much less air resistance.
When a rocket travels through space, the main forces involved are thrust generated by the rocket engines and gravity from celestial bodies, such as planets and stars. The rocket's engines provide the necessary thrust to overcome gravity and accelerate the rocket. In space, there is no air resistance, so the main force opposing motion is gravity.
The atmosphere affects a rocket by providing resistance as the rocket travels through it, which causes drag. Thicker atmospheres can increase drag and make it more difficult for a rocket to accelerate. Additionally, the atmosphere's composition can affect the combustion process in the rocket engines.
When a rocket is launched, it travels through the troposphere, stratosphere, mesosphere, and thermosphere before reaching space. Each layer has its own distinct characteristics and composition, affecting the rocket's flight trajectory and performance.
A rocket continues to accelerate after launch by continuously burning fuel in its engines, which generates thrust. As the rocket's mass decreases due to burning fuel, its acceleration increases per Newton's second law of motion, F=ma. This process allows the rocket to overcome Earth's gravitational pull and gain speed as it travels through the atmosphere and into space.
As long as the thrust is more than the weight of the rocket (toy or otherwise) the rocket will accelerate. When the thrust matches the weight, the rocket will cruise. When the thrust is less then the rocket will slow.
A spacecraft or a rocket.
As the rocket travels upwards, it burns fuel, which causes its mass to decrease. Since the engine thrust remains constant, the rocket can accelerate faster due to the decrease in mass, following Newton's second law (F=ma). This phenomenon is known as the rocket equation and is essential for space travel.
A rocket accelerates by exhaust gases being expelled at high speeds out of the rocket's nozzle in a process known as reaction propulsion. According to Newton's third law of motion, for every action, there is an equal and opposite reaction, which propels the rocket forward. This allows the rocket to accelerate through the vacuum of space without needing air or ground to push off from.
Spacemen
what is the speed of a rocket that travels 9000 meters in 12.12 seconds
Rocket trajectory refers to the path that a rocket follows as it travels through space. This path is influenced by factors such as the rocket's speed, direction, and the gravitational pull of celestial bodies. By carefully calculating and monitoring the trajectory, engineers can ensure that the rocket reaches its intended destination.
The force that will slow the rocket down is typically drag, which is the resistance force that acts opposite to the rocket's direction of motion as it travels through the atmosphere. Drag is caused by air particles colliding with the rocket and creating friction, which reduces the rocket's speed.