answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: Why is the third ionization energy of Mn large than that of Fe even though that of Fe is expected to be larger?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What periodic treds exist for ionization energy?

Ionization energy increases to the right and up on the periodic table. Ionization energy is the energy required to remove an electron. It can be conceptualized as the opposite of electron affinity, though this is not precisely true.


What elements have the same ionization energy?

None of them do exactly. The elements' ionization energies definitely trend in a couple of ways though. The ionization energy variations tend to decrease as atomic number goes up and tend to increase as you remove more electrons from the atom.


Which has larger atomic size F or F ion?

Ionization energy increase across a period and decreases down a group, therefore the the element with the greater ionization energy would be found in the top right of the periodic table. In this instance fluorine, F would have the greater ionization energy.


Use ionization energy to explain why metals lose electrons more easily than nonmetals?

Metals lose electrons more easily than the non-metals because they require less ionization energy compared with the non-metals. The metals require less ionization energy to lose the electrons than though gain the electrons unlike the non-metals.


Why does ionization energy decrease down the family?

You question is not very clearly stated but I think I know what you are asking. As you go down the column of any family of elements in the periodic table, you move to increasingly heavier and larger atoms. Their outer electrons are therefore farther from the nucleus, and even though the nucleus is larger and has a larger positive charge, the increased distance is the predominant influence, making the outermost electrons less tightly bound, and therefore more easily ionized, with a lower ionization energy.


What does ionization energy remove from an atom of an element?

Ionization energy and electron affinity for cations and anions, respectively.


Can a body of larger mass be hotter than another body of smaller mass if they are at the same temperature?

No. "Temperature" means "how hot it is". (The larger mass could have more or less heat energy in it, though. Even if they're both at the same temperature.)


Did Magellan find what he expected?

no, he died halfway though his journey


What is the first ionization energy for xenon?

It's going to be pretty high, since xenon is a noble gas, and doesn't naturally react with anything, therefore it's not going to naturally want to lose an electron. It can be made to, however, and it's a lot easier for it to lose one than any noble gas above it, because xenon's octet of valence electrons is farther from the nucleus than the others (except radon) so a. it will have a lower ionization energy, b. the octet will experience more nuclear shielding, and c. it will be potentially more reactive (though again, it's not natural.) The actual ionisation energy is 1170.36 kJ per mole


Why does He have a higher first ionization energy than Ne?

Even though both these gases are noble gases with inert configurations, He has higher first ionization energy than Neon because it has smaller size than the Neon. Due to smaller size the electrons are close to nucleus and thus the electrostatic force of attraction is very large. In the case of Ne, the electrostatic orce of attraction is high but not as large as He. Thus, it is more difficult to remove electron from He than from Ne.


What type of Bond does arsenic form?

The element Arsenic would be expected to form 3 covalent bonds in order to obey the octet rule. As is a nonmetal in group 5A, and therefore has 5 valence electrons. In order to obey the octet rule, it needs to gain 3electrons. It can do this by forming 3 single covalent bonds.


How the energy converted to washing machine?