ohm meter puts current thru a resistor to measure voltage drop
E / I = R
if the circuit already has current flowing the numbers are meaningless
Ohms are the unit of measurement for resistance, so an ohmmeter is a device that measures electrical resistance. A galvanometer measures the current flowing through the resistance, so the two are related. To convert a galvanometer into an ohmmeter, one needs an external battery.
The correct question is what is the voltage drop across a resistor or the current flowing through the resistor using Ohm's Law where Voltage = Current x Resistance
Here are some practice questions based on Ohm's Law: If a resistor has a resistance of 10 ohms and a current of 2 amperes flowing through it, what is the voltage across the resistor? A circuit has a voltage of 12 volts applied across a resistor with a resistance of 4 ohms. What is the current flowing through the resistor? If a circuit has a current of 0.5 amperes flowing through a resistor with a resistance of 8 ohms, what is the voltage across the resistor? These questions will help you practice applying Ohm's Law to calculate voltage, current, and resistance in electrical circuits.
half of the current flowing thru resistor 1.... V=IR.
To find the energy dissipated in a resistor, you can use the formula: Energy (current)2 x resistance x time. This formula calculates the energy dissipated in the resistor based on the current flowing through it, the resistance of the resistor, and the time the current flows.
No, resistors are measured in ohms, not amps. Ohms represent the resistance offered by the resistor to the flow of current, whereas amps (amperes) represent the measure of current flowing through a circuit.
A simple ohmmeter is constructed using a battery, a galvanometer, and a set of resistors. The battery supplies a constant voltage, while the galvanometer measures the current flowing through the circuit when a resistor is connected. The resistance is calculated using Ohm's Law (R = V/I), where V is the battery voltage and I is the current indicated by the galvanometer. The device may also include a scale or a dial to provide a direct reading of resistance values.
A variable resistor can be used to control the current in a circuit by adjusting its resistance. By changing the resistance value, the amount of current flowing through the circuit can be regulated.
If the potential difference across a resistor is doubled, the current flowing through the resistor will also double, assuming its resistance remains constant. This relationship is described by Ohm's Law, where current is directly proportional to voltage when resistance is held constant.
The current can't be calculated from the information given in the question.The power rating of a resistor is the maximum power it can dissipate before it overheatsand its resistance possibly changes permanently. The power rating is not the amount ofpower it always dissipates.So, all we really know about the resistor in the question is that its resistance is 21 ohms.And all we can say about the current through it is:Current through the resistor = (voltage between the ends of the resistor) divided by (21).
In a series circuit, if one resistor is replaced with a resistor of lower resistance, the total resistance in the circuit decreases. This leads to an increase in the overall current flowing through the circuit.
A variable resistor can be connected in series with a light bulb in a circuit. By adjusting the resistance of the variable resistor, the current flowing through the circuit changes, affecting the brightness of the light bulb. Increasing the resistance decreases the current, resulting in lower brightness, while decreasing the resistance increases the current, leading to higher brightness.