answersLogoWhite

0


Best Answer

It has to do with probabilities. The area under the curve of a wavefunction can be whatever you want it to be. You normalize the curve to have the total probability equal to 1, which makes the mathematics a lot easier. We do this with statistics and probabilities all the time.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why the wave function must be normalized?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

What is orthogonal and normalized wave function?

Everything you've ever wanted to know can be found at the link below.


What is normalising a wave function?

A wave function is normalized by determining normalization constants such that both the value and first derivatives of each segment of the wave function match at their intersections. If instead you meant renormalization, that is a different problem having to do with elimination of infinities in certain wave functions.


Why do you normalise a wave function of a particle?

There are two parts to this. First is, "What is the physical significance of a wave function?" Secondly, "Why do we normalize it?"To address the first:In the Wave Formulation of quantum mechanics the wave function describes the state of a system by way of probabilities. Within a wave function all 'knowable' (observable) information is contained, (e.g. position (x), momentum (p), energy (E), ...). Connected to each observable there is a corresponding operator [for momentum: p=-i(hbar)(d/dx)]. When the operator operates onto the wave function it extracts the desired information from it. This information is called the eigenvalue of the observable... This can get lengthy so I'll just leave it there. For more information I suggest reading David Griffith's "Introduction to Quantum Mechanics". A math knowledge of Calculus II should suffice.To address the second:Normalization is simply a tool such that since the probability of finding a particle in the range of +/- (infinity) is 100% then by normalizing the wave function we get rid of the terms that muddy up the answer the probability.An un-normalized wave function is perfectly fine. It has only been adopted by convention to normalize a wave function.ex. un-normalized wave function (psi is defined as my wave function)- The integral from minus infinity to positive infinity of |psi|^2 dx = 2piex. normalized wavefunction- The integral from minus infinity to positive infinity of |psi|^2 dx = 1


What is well behaved wave function?

List of the characteristics a well-behaved wave function are ..The function must be single-valued; i.e. at any point in space, the function must have only one numerical value.The function must be finite and continuous at all points in space. The first and second derivatives of the function must be finite and continuous.The function must have a finite integral over all space.


Physical significance of green function in quantum mechanics?

There are two parts to this. First is, "What is the physical significance of a wave function?" Secondly, "Why do we normalize it?"To address the first:In the Wave Formulation of quantum mechanics the wave function describes the state of a system by way of probabilities. Within a wave function all 'knowable' (observable) information is contained, (e.g. position (x), momentum (p), energy (E), ...). Connected to each observable there is a corresponding operator [for momentum: p=-i(hbar)(d/dx)]. When the operator operates onto the wave function it extracts the desired information from it. This information is called the eigenvalue of the observable... This can get lengthy so I'll just leave it there. For more information I suggest reading David Griffith's "Introduction to Quantum Mechanics". A math knowledge of Calculus II should suffice.To address the second:Normalization is simply a tool such that since the probability of finding a particle in the range of +/- (infinity) is 100% then by normalizing the wave function we get rid of the terms that muddy up the answer the probability.An un-normalized wave function is perfectly fine. It has only been adopted by convention to normalize a wave function.ex. un-normalized wave function (psi is defined as my wave function)- The integral from minus infinity to positive infinity of |psi|^2 dx = 2piex. normalized wavefunction- The integral from minus infinity to positive infinity of |psi|^2 dx = 1

Related questions

What is orthogonal and normalized wave function?

Everything you've ever wanted to know can be found at the link below.


What is normalising a wave function?

A wave function is normalized by determining normalization constants such that both the value and first derivatives of each segment of the wave function match at their intersections. If instead you meant renormalization, that is a different problem having to do with elimination of infinities in certain wave functions.


Why do you normalise a wave function of a particle?

There are two parts to this. First is, "What is the physical significance of a wave function?" Secondly, "Why do we normalize it?"To address the first:In the Wave Formulation of quantum mechanics the wave function describes the state of a system by way of probabilities. Within a wave function all 'knowable' (observable) information is contained, (e.g. position (x), momentum (p), energy (E), ...). Connected to each observable there is a corresponding operator [for momentum: p=-i(hbar)(d/dx)]. When the operator operates onto the wave function it extracts the desired information from it. This information is called the eigenvalue of the observable... This can get lengthy so I'll just leave it there. For more information I suggest reading David Griffith's "Introduction to Quantum Mechanics". A math knowledge of Calculus II should suffice.To address the second:Normalization is simply a tool such that since the probability of finding a particle in the range of +/- (infinity) is 100% then by normalizing the wave function we get rid of the terms that muddy up the answer the probability.An un-normalized wave function is perfectly fine. It has only been adopted by convention to normalize a wave function.ex. un-normalized wave function (psi is defined as my wave function)- The integral from minus infinity to positive infinity of |psi|^2 dx = 2piex. normalized wavefunction- The integral from minus infinity to positive infinity of |psi|^2 dx = 1


What is well behaved wave function?

List of the characteristics a well-behaved wave function are ..The function must be single-valued; i.e. at any point in space, the function must have only one numerical value.The function must be finite and continuous at all points in space. The first and second derivatives of the function must be finite and continuous.The function must have a finite integral over all space.


Physical significance of green function in quantum mechanics?

There are two parts to this. First is, "What is the physical significance of a wave function?" Secondly, "Why do we normalize it?"To address the first:In the Wave Formulation of quantum mechanics the wave function describes the state of a system by way of probabilities. Within a wave function all 'knowable' (observable) information is contained, (e.g. position (x), momentum (p), energy (E), ...). Connected to each observable there is a corresponding operator [for momentum: p=-i(hbar)(d/dx)]. When the operator operates onto the wave function it extracts the desired information from it. This information is called the eigenvalue of the observable... This can get lengthy so I'll just leave it there. For more information I suggest reading David Griffith's "Introduction to Quantum Mechanics". A math knowledge of Calculus II should suffice.To address the second:Normalization is simply a tool such that since the probability of finding a particle in the range of +/- (infinity) is 100% then by normalizing the wave function we get rid of the terms that muddy up the answer the probability.An un-normalized wave function is perfectly fine. It has only been adopted by convention to normalize a wave function.ex. un-normalized wave function (psi is defined as my wave function)- The integral from minus infinity to positive infinity of |psi|^2 dx = 2piex. normalized wavefunction- The integral from minus infinity to positive infinity of |psi|^2 dx = 1


How is a sine curve related to a wave?

See the link belowA sine wave is computed by a mathematical function. A pure sine wave in a physical sense would exactly match the calculated value in the function at every point in time.


what is wave function?

The official definition for the word wave function is "a function that satisfies a wave equation and describes the properties of a wave."


How will you calculate potential if the wave function is given?

Square the wave function.


What is sinc function?

In mathematics and engineering, the sinc function, denoted by sinc(x), has two slightly different definitions.[1]In mathematics, the historical unnormalized sinc functionis defined byIn digital signal processing and information theory, the normalized sinc function is commonly defined by The normalized sinc (blue) and unnormalized sinc function (red) shown on the same scale.


What are the Differentiate the sine wave and cosine wave?

The differential of the sine function is the cosine function while the differential of the cosine function is the negative of the sine function.


Why should wave function be single valued and finite?

Type your answer here... the wave function associated with the particle , and it is must be single valued of position and time , when two values are found that means the particle exists in two different places , which is impossible yet


For refraction to occur in a wave the wave must?

For refraction to occur in a wave, the wave must enter a new medium at an angle.