Carbon has +2 oxidation number in Carbon monoxide. It gets this oxidation number when it loses or shares two electrons.
The oxidation number of carbon in formaldehyde (HCHO) is +2. In this molecule, oxygen has an oxidation number of -2, and hydrogen has an oxidation number of +1. By applying the rules for assigning oxidation numbers in a compound, we can determine that carbon has an oxidation number of +2.
H is +1, O is -2 overall carbon will have an oxidation # of -3
The oxidation number for carbon in CHI3 compound is -2. In CHI3, iodine has an oxidation number of -1 and hydrogen has an oxidation number of +1, which allows carbon to have an oxidation number of -2 to balance the overall charge of the compound.
The oxidation number of carbon in CH3OH is -2. This is because hydrogen has an oxidation number of +1 and oxygen has an oxidation number of -2. By assigning these values to the other atoms in the molecule, we can determine that carbon must have an oxidation number of -2 to balance the overall charge of the molecule.
The oxidation number for carbon in C2H6O is -3. This is calculated by assigning hydrogen an oxidation number of +1 and oxygen an oxidation number of -2, then applying algebra to determine the oxidation number of carbon.
The oxidation number of carbon in formaldehyde (HCHO) is +2. In this molecule, oxygen has an oxidation number of -2, and hydrogen has an oxidation number of +1. By applying the rules for assigning oxidation numbers in a compound, we can determine that carbon has an oxidation number of +2.
H is +1, O is -2 overall carbon will have an oxidation # of -3
The oxidation number for carbon in CHI3 compound is -2. In CHI3, iodine has an oxidation number of -1 and hydrogen has an oxidation number of +1, which allows carbon to have an oxidation number of -2 to balance the overall charge of the compound.
The oxidation number of carbon in CH3OH is -2. This is because hydrogen has an oxidation number of +1 and oxygen has an oxidation number of -2. By assigning these values to the other atoms in the molecule, we can determine that carbon must have an oxidation number of -2 to balance the overall charge of the molecule.
The oxidation number for carbon in C2H6O is -3. This is calculated by assigning hydrogen an oxidation number of +1 and oxygen an oxidation number of -2, then applying algebra to determine the oxidation number of carbon.
The oxidation number of carbon in CO is +2. This is because the oxidation number of oxygen is typically -2, and there is only one oxygen atom in CO, so the oxidation number of carbon must be +2 to balance the charge.
The oxidation number of carbon in K2CO3 is +4. This is because the oxidation number of potassium (K) is +1 and the oxidation number of oxygen (O) is -2, which allows for the calculation of carbon's oxidation number.
The oxidation number of carbon in carbonate (CO3^2-) is +4. In the carbonate ion, each oxygen atom has an oxidation number of -2, so the overall charge of the ion is -2. This means the oxidation number of carbon must be +4 to balance the charges in the compound.
The oxidation number of carbon in COCl2 is +2. In this compound, oxygen has an oxidation number of -2, and chlorine has an oxidation number of +1. Since the overall charge of COCl2 is zero, the oxidation number of carbon must be +2 to balance out the charges.
The oxidation number of each hydrogen in H2CO2 is +1, while the oxidation number of each carbon in CO2 is +4. This is because hydrogen usually has an oxidation number of +1, and oxygen usually has an oxidation number of -2.
The oxidation number of carbon in methanol (CH3OH) is -2. The oxygen has an oxidation number of -2, and the hydrogen atoms have an oxidation number of +1 each, resulting in a total charge of 0 for the molecule.
I believe K2CO3.