Because acids and bases react very strongly. You can look for reaction of potassium with water - and imagine that hydrochloric acid is much stronger than water.
2K + 2HCl -> 2KCl + H2 hydrochloric acid would do here.
The reaction between potassium dichromate and hydrochloric acid forms chromic chloride, chlorine gas, and water. This reaction is a redox reaction, as the potassium dichromate is reduced while the hydrochloric acid is oxidized.
Potassium sulfate can be made by reacting potassium chloride with sulfuric acid. The reaction produces potassium sulfate and hydrochloric acid as byproduct. The potassium sulfate can then be extracted and purified.
The balanced equation for potassium bromide (KBr) and hydrochloric acid (HCl) reacting is: KBr + HCl → KCl + HBr. This reaction is a double displacement reaction, where potassium chloride (KCl) and hydrobromic acid (HBr) are formed.
To make potassium chloride and water from potassium hydroxide, you would add hydrochloric acid (HCl). The reaction would be: KOH + HCl → KCl + H2O
2K + 2HCl -> 2KCl + H2 hydrochloric acid would do here.
The reaction between potassium dichromate and hydrochloric acid forms chromic chloride, chlorine gas, and water. This reaction is a redox reaction, as the potassium dichromate is reduced while the hydrochloric acid is oxidized.
Potassium sulfate can be made by reacting potassium chloride with sulfuric acid. The reaction produces potassium sulfate and hydrochloric acid as byproduct. The potassium sulfate can then be extracted and purified.
The balanced equation for potassium bromide (KBr) and hydrochloric acid (HCl) reacting is: KBr + HCl → KCl + HBr. This reaction is a double displacement reaction, where potassium chloride (KCl) and hydrobromic acid (HBr) are formed.
Potassium is too reactive to mix with acid
To make potassium chloride and water from potassium hydroxide, you would add hydrochloric acid (HCl). The reaction would be: KOH + HCl → KCl + H2O
total ionic equation (also known as the complete ionic equation) for the reaction of potassium carbonate with hydrochloric acid
16HCl + 2KMnO4 --> 2KCl + 2MnCl2 + 5Cl2 + 8H2O
Potassium sulfate can be prepared by reacting potassium chloride with sulfuric acid in a round-bottom flask, equipped with a reflux condenser. Heat is applied to the reaction mixture, and the sulfuric acid reacts with the potassium chloride to produce potassium sulfate and hydrochloric acid.
The reaction between potassium and hydrochloric acid forms potassium chloride (KCl) salt. This is because potassium is a metal and hydrochloric acid is an acid, leading to the formation of a salt through a neutralization reaction.
I am guessing that you mean hydrochloric acid, and the reaction is ammonia plus hydrochloric acid gives ammonium chloride; NH3 + HCl => NH4Cl
Concentrated hydrochloric acid does not react with potassium because potassium is a more reactive metal than hydrogen. When hydrochloric acid reacts with metals, it typically displaces hydrogen gas. However, potassium is so reactive that it can displace hydrogen from hydrochloric acid, creating a violent reaction that can be unsafe.