Saved by the Bell The New Class - 1993 Fire at the Max Part 2 4-26 is rated/received certificates of: USA:TV-G
G major scale: (Bottom octave) G - 4 A - 2 B - 7 C - 6 D - 4 E - 2 F# - 5 G - 4 (Next Octave) G - 4 A - 2 B - 4 C - 3 D - 1 E - 2 F# - 3* G - 2* *Cheat in closer to 1st position than usual.
G major scale: (Bottom octave) G - 4 A - 2 B - 7 C - 6 D - 4 E - 2 F# - 5 G - 4 (Next Octave) G - 4 A - 2 B - 4 C - 3 D - 1 E - 2 F# - 3* G - 2* *Cheat in closer to 1st position than usual.
Standard tuning. E------------------------------------------------------| B------------------------------------------------------| G------------------------------------------------------| D------------------------------------------------------| A--2--2--4--2-----------2--4--2-----2--2-----2---------| E--------------4--0--4-----------4--------4------------| E------------------------------------------------------| B------------------------------------------------------| G------------------------------------------------------| D------------------------------------------------------| A--2--2--4--2-----------2--4--2-----2--2-----2---------| E--------------4--0--4-----------4--------4------------| E------------------------------------------------------| B------------------------------------------------------| G------------------------------------------------------| D------------------------------------------------------| A--2--2--4--2-----------2--4--2-----2--2-----2---------| E--------------4--0--4-----------4--------4------------| E------------------------------------------------------| B------------------------------------------------------| G------------------------------------------------------| D------------------------------------------------------| A--2--2--4--2-----------2--4--2-----2--2-----2---------| E--------------4--0--4-----------4--------4------------| E------------------------------------------------------| B------------------------------------------------------| G------------------------------------------------------| D------------------------------------------------------| A--7--4--2-----7--4--2-----7--4--2-----2--2--4--6--7---| E-----------4-----------4-----------4------------------|
To find ( F(G(x)) ), we first need to substitute ( G(x) ) into ( F(x) ). Given ( F(x) = 3x + 2 ) and ( G(x) = x^2 + 4 ), we substitute ( G(x) ) into ( F ): [ F(G(x)) = F(x^2 + 4) = 3(x^2 + 4) + 2 = 3x^2 + 12 + 2 = 3x^2 + 14. ] Thus, ( F(G(x)) = 3x^2 + 14 ).
2g + 4 - 6 = g + 12g - 2 = g + 12g - g = 1 + 2g = 3Check:2(3) + 4 - 6 = 3 + 16 + 4 - 6 = 44 = 4
(f+g)(x)=8x^2+4x-4
2g - 9 = -5 Therefore, 2g = 4 Therefore, g = 4/2 g = 2
e---------------4-2-0---------------------4-2-0-------------0-0------------------ B-0---------0----------------------0---0-0-----------4---2-4-------0------------- G---1----1-----------------1--3-----------------------------------------1-------- D------2---------------------------------------------------------------------2--- A-------------------------------------------------------------------------------- E-------------------------------------------------------------------------------- e---------------0--4-2-0---------------------4-2-0-------------0-0--------------- B-0---------0----------------------0---0-0-----------4---2-4-------0------------- G---1----1-----------------1--3-----------------------------------------1-------- D------2---------------------------------------------------------------------2--- A-------------------------------------------------------------------------------- E-------------------------------------------------------------------------------- e-4--4-4-5-7-7--5-4-2-4-5-5---5-4-2-0-----------0-------------------------------- B------------------------------------------------4--2-4------------0------------- G------------------------------------------------------------1--3---------------- D-------------------------------------------------------------------------------- A-------------------------------------------------------------------------------- E-------------------------------------------------------------------------------- e---------0-0--0-----------2--5-4------------------0-2-4-5-7--------------------- B-0--0----------4-2--2-2----------5--5--4--0-0----------------------------------- G-------------------------------------------------------------------------------- D-------------------------------------------------------------------------------- A-------------------------------------------------------------------------------- E-------------------------------------------------------------------------------- e-0--2--4---5---2---0------------------------------------------------------------- B--------------------------------------------------------------------------------- G--------------------------------------------------------------------------------- D--------------------------------------------------------------------------------- A--------------------------------------------------------------------------------- E---------------------------------------------------------------------------------
No not yet... but right now they have the 1 g, 2 g, 3 g, and 4 g
I'm assuming you mean "G" as a variable in this problem: G + 2 = 8 + 4. Since 8 + 4 = 12, then the other side of the equation must also equal 12. 12 - 2 = 10; "G" = 10.
The inverse of a function (G(x)) can be found by switching the roles of (x) and (y) and solving for (y). Given the function (G(x) = -\frac{4}{3}x + 2), let's find its inverse: Step 1: Replace (G(x)) with (y): [y = -\frac{4}{3}x + 2] Step 2: Swap (x) and (y): [x = -\frac{4}{3}y + 2] Step 3: Solve for (y): [x - 2 = -\frac{4}{3}y] [-\frac{3}{4}(x - 2) = y] So, the inverse function (G^{-1}(x)) is: [G^{-1}(x) = -\frac{3}{4}(x - 2)]