Because you are testing on the ground side of the circuit in question.
An ideal ammeter is a device that measures electric current and has zero resistance, producing no voltage drop when connected in a circuit. This ensures that the current being measured is not affected by the presence of the ammeter itself, providing an accurate reading of the current flowing through the circuit.
A: It must be be understood that current needs voltage other wise it is zero. An ammeter for DC is always a voltmeter that reads small IR drop to convert that reading into current present. Like an ohmmeter needs volts to read ohm. Both reading are volts it just convert those reading into whatever scale is switch to.
Zero. No current is flowing in an open circuit. The ammeter will display an amount of 0 amps because there is no longer any current once the circuit has been broken. An ammeter measures current.
The effect the multimeter might have on the circuit when inserted to measure the current is to increase the circuit resistance and decrease the available voltage to the circuit. This is because the multimeter in amps or milliamps mode does have a small resistance which is not zero, so by Ohm's law, there is a voltage drop across the multimeter; small, but not zero. Usually this effect is small. One way to compensate is to start by measuring voltage, and then inserting a separate ammeter and adjusting the power supply to match the original voltage. Of course, the voltmeter must be downstream of the ammeter.
0. An ammeter is placed in series with the circuit in question; if its' internal resistance is high, it will change the current flow, thus making the measurement meaningless. For the same reason an ideal voltage meter will have infinite resistance.
No current flows when the applied voltage is zero.
The current will be zero if there is no voltage.
An open switch in a circuit will stop all current flow so the ammeter should read zero amps.
The ammeter is reading zero because there is no current flowing. This is because one of the resistors is faulty; the faulty resistor has an "open circuit" (open circuit means there is a broken connection). We know that: Ohms law is: V = I x R (voltage = current x resistance) Therefore because there is zero current in each resistor there will be zero voltage across each resistor. However we also know that: Kirchhoff's voltage law is: V1 +V2 +V3 + … = Vs (the sum of the voltage drops accross each component in a circuit MUST equal the supply (or battery) voltage). But if all the resistors are zero volts, then what component equals the supply (or battery) voltage? The battery voltage is developed across the open circuit… therefore the resistor which is faulty will have a voltage across it equal to the battery voltage. That easy to measure with a volt meter! hope this helps
I am going to assume that you mean low "resistance" in an open circuit test and are performing this with a multimeter. An ammeter works by place a very small amount of resistance in series with a circuit and then measuring the Voltage drop across the resistance. The Voltage is directly proportional to the current as given in ohms law: E = I x R If you are measuring the resistance through the ammeter it will have a very low resistance and impedance.
No voltage means no current can flow.
Zero drift current refers to the small amount of electrical current that flows through an operational amplifier when the input voltage is zero. This current can cause errors in precision measurements because it can create an offset in the output voltage of the amplifier. Minimizing zero drift current is important in applications where accurate and stable voltage measurements are required.