walking to hills
passive or active transport. Passive transport does not require energy input and includes processes like diffusion and facilitated diffusion. Active transport requires energy input and includes processes like primary active transport and secondary active transport.
Active transport processes, such as primary active transport, secondary active transport, and vesicular transport, require the cell to expend energy in the form of ATP. These processes enable the movement of molecules or ions against their concentration gradients or across membranes.
The concentration gradient is a passive force in cellular transport processes.
Cellular transport processes refer to the movement of molecules across cell membranes. This includes passive processes like diffusion and facilitated diffusion, as well as active processes like active transport and endocytosis/exocytosis. These processes are crucial for maintaining cellular homeostasis and allowing cells to exchange nutrients, ions, and waste products with their environment.
From ATP
cell membrane
Cotransport
The two general types of transport used by cells are passive transport, which does not require energy and includes processes like diffusion and osmosis, and active transport, which requires energy and involves processes like protein pumps and vesicle transport.
Two transport processes that use carrier proteins are facilitated diffusion and active transport. In facilitated diffusion, carrier proteins help move molecules across the cell membrane down their concentration gradient, while in active transport, carrier proteins help move molecules against their concentration gradient by using energy.
Sugar transport can occur through both passive transport, such as facilitated diffusion or simple diffusion, and active transport, such as primary or secondary active transport processes. Osmosis specifically refers to the movement of water across a semi-permeable membrane, so sugar transport itself is not osmosis.
Cell transport includes processes like passive diffusion, facilitated diffusion, active transport, and endocytosis/exocytosis. These processes help cells regulate the movement of molecules across their membrane to maintain a balance of ions and nutrients inside and outside the cell.
Mithocondria