It is Afrikaans for the phrase "involves an interior decorator and designer."
No, because it is n ot a proper n ou n.
Norway starts with n. New Zealand also starts with N.
n on a map stands for north on a compass
a n teater.
enjoin
Ang "Ekonomiks" ay isinulat ni Dr. R. A. M. P. E. D. A. L. O. N. S. A. I. A. N. N. A. N. I. O. S. D. I. N. A. M. A. T. O. T. A. N. D. A. N. G. A. N. G. I. S. A. I. N. A. N. G. K. A. I. S. I. K. A. I. N. A. A. P. A. R. N. G. K. A. L. A. M. A. I. N. T. A. I. N. G. A. P. A. R. A. I. A. P. I. N. I. N. I. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A.
n n n n n n n n.
n squared x n n x n x n = n cubed n x n = n squared n squared x n = n cubed
The value of the expression n(n-1)(n-2)(n-3)(n-4)(n-5) is the product of n, n-1, n-2, n-3, n-4, and n-5.
N - 5*N = 4*N N - 5*N = 4*N N - 5*N = 4*N N - 5*N = 4*N
(n*n)+n
jazz has been around for a billion years
Barbados \n . Botswana \n . Bulgaria \n . Cameroon \n . Colombia \n . Ethopia \n . Hondurus \n . Kiribati \n . Malaysia \n . Mongolia \n . Pakistan \n . Paraguay \n . Portugal \n . Slovakia \n .
n ,n ,n,n,,n ,,n,n
Assuming you mean the first n counting numbers then: let S{n} be the sum; then: S{n} = 1 + 2 + ... + (n-1) + n As addition is commutative, the sum can be reversed to give: S{n} = n + (n-1) + ... + 2 + 1 Now add the two versions together (term by term), giving: S{n} + S{n} = (1 + n) + (2 + (n-1)) + ... + ((n-1) + 2) + (n + 1) → 2S{n} = (n+1) + (n+1) + ... + (n+1) + (n+1) As there were originally n terms, this is (n+1) added n times, giving: 2S{n} = n(n+1) → S{n} = ½n(n+1) The sum of the first n counting numbers is ½n(n+1).
n+n-n-n-n+n-n-n squared to the 934892547857284579275348975297384579th power times 567896578239657824623786587346378 minus 36757544.545278789789375894789572356757583775389=n solve for n! the answer is 42
The sum of n, n-1, n-2, and n-3 is 4n-6.