any time there are as many electrons and protons and they fill each orbital optimally.
1s22s2, [He]2s2, 2-2
The nuclear structure is more important because the nuclei of actinides are unstable and spontaneously break apart
when a neutral atom loses an electron it becomes a positive ion. it now has a stable outer most shell.
A hydrogen atom is only a proton and an electron. Beyond that the neutron seems to keep the nucleus together and stable. Maybe a better question is, "What is the difference between a hydrogen atom without an electron and a proton?"
Molybdenum's electon configuration is [Kr] 5s1 4d5 this is because all elements want to be half-full or full. so the 2nd electron in the 5s2 moves to make the 4d4 complete so it turns to 5s1 4d5....making Mo half-full and stable.
Stable electron configurations are most likely to contain filled energy levels or filled subshells. These configurations generally follow the octet rule or duet rule, depending on the element. Additionally, stable electron configurations may contain configurations with a full valence shell of electrons.
6
Although the formation of an octet is the most stable electron configuration, other electron configurations provide stability. These relatively stable electron arrangements are referred to a pseudo-noble gas configuration. Although the formation of an octet is the most stable electron configuration, other electron configurations provide stability. These relatively stable electron arrangements are referred to a pseudo-noble gas configuration.
protons
completely filled valence shells
Yes, helium, xenon, and neon all have stable electron configurations. Helium has a full outer electron shell with 2 electrons, xenon has a full outer shell with 8 electrons, and neon has a full outer shell with 8 electrons as well.
The electron configurations of LiF will be the same as the electron configurations of atoms in Group 18 (noble gases) because Li will lose its single electron to attain a stable octet similar to the noble gases, while F will gain an electron to achieve a complete valence shell.
Inert gas configurations refer to the electron configurations of noble gases, which have a full outer electron shell. These configurations are very stable and unreactive due to their complete outer energy level. Other elements may strive to attain such configurations through chemical bonding to achieve greater stability.
Solutions are mixtures of one or more solutes dissolved in a solvent. They do not have electron configurations. Only atoms and ions have electron configurations.
Krypton and Xenon are noble gases with stable electron configurations, making them very unreactive. They have a full outer electron shell, which makes them thermodynamically stable and unlikely to form chemical bonds with other elements. Additionally, the energy required to break their stable electron configurations and form compounds is usually very high, making the reaction unfavorable.
The elements with electron configurations ending in ns2np5 are the halogens in Group 17 of the periodic table. This includes fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At). These elements have seven valence electrons and readily gain an electron to achieve a stable octet configuration.
Some elements achieve stable electron configurations through the transfer of electrons, which occurs in ionic bonding. This process involves one element losing electrons (cation) and another element gaining electrons (anion) to reach a stable configuration. Ionic bonding typically occurs between metals and nonmetals with significant differences in electronegativity.