for 1 leter- dissolve 3.7225 gm EDTA in 1 leter boild out disttiled water
To prepare a 0.05 M disodium EDTA solution, you would need to dissolve 3.72 grams of disodium EDTA dihydrate (Na2C10H14N2Na2·2H2O) in enough water to make 1 liter of solution.
Yes, EDTA is water-soluble. To prepare a solution, you can simply add the desired amount of EDTA powder to water and stir until it is completely dissolved. If you encounter issues with solubility, you can adjust the pH of the solution using sodium hydroxide or hydrochloric acid to help dissolve the EDTA.
5mM = 0.005 moles 100 mL = 0.1 Liters Molarity = moles of solute/Liters of solution 0.005 M EDTA = X moles/0.1 Liters = 0.0005 moles EDTA =_____________ Now, look up the molecular formula for EDTA and find how many grams needed to add to your 100 mL.
To perform an EDTA titration, first prepare a solution containing the analyte (the substance being measured) and a suitable indicator, such as Eriochrome Black T. Add a standardized solution of EDTA to the analyte solution until the endpoint is reached, indicated by a color change in the indicator. The volume of EDTA solution added can be used to calculate the concentration of the analyte based on the stoichiometry of the reaction.
0.1M is 1/10 molar whereas 1mM is 1 millimolar and thus 1/1000 molar. There is thus a 1:100 dilution. So 10:1000 would be the same. To a 1000ml volumetric flask, pipete 10mls of 0.1M EDTA solution. Make up to the mark with deionized water. Mix and shake and you will have 1000mls of 1mM EDTA solution.
To prepare 100mM EDTA solution, dissolve 37.2g of EDTA disodium salt dihydrate in 1 liter of water. Make sure the pH is adjusted to around 8.0 with sodium hydroxide or hydrochloric acid if needed. Mix well until EDTA is fully dissolved.
To prepare a 0.01 M solution of EDTA in 1000 ml, you would need 37.22 grams of EDTA disodium salt dihydrate (C10H14N2Na2O8·2H2O) or approximately 0.1 moles. Dissolve the EDTA in water and make up the volume to 1000 ml to get a 0.01 M solution.
To prepare a 0.5 M EDTA solution, dissolve the appropriate amount of EDTA disodium salt dihydrate (molecular weight 372.24 g/mol) in water to achieve a final volume desired. For example, to make 100 mL of 0.5 M EDTA solution, you would dissolve 18.61 g of EDTA disodium salt dihydrate in water and adjust the volume to 100 mL.
To standardize a 0.02N EDTA solution, you can use a calcium or magnesium salt solution of known concentration. First, prepare a sample of the metal salt and titrate it with the EDTA solution, using a suitable indicator like Eriochrome Black T for calcium or magnesium. The endpoint is reached when the color changes, indicating that all metal ions have complexed with the EDTA. Calculate the exact normality of the EDTA based on the volume used in the titration and the initial concentration of the metal salt.
You dilute it 1:10, then you take 1 part of that solution and mix it with 9 parts of the diluent. That will make the 1:100 dilution you need, incl. prevention of pipette inaccuracy.
To prepare a 0.1 N EDTA solution, first calculate the amount of disodium EDTA (C10H14N2Na2O8 · 2H2O) needed. For a 1-liter solution, dissolve approximately 37.22 grams of disodium EDTA in distilled water. Adjust the pH to 7.0-7.5 using sodium hydroxide if necessary, and then make up the final volume to 1 liter with distilled water. Mix thoroughly to ensure complete dissolution.
To make a 3.7% EDTA solution, you would add 3.7 grams of EDTA to 100 mL of solution.