Electrical impulses are referred to as neural impulses because a neural impulse cause electrical impulses. Neurons use electrical impulses to send messages.
Myelination in the brain serves to increase the conduction speed of nerve impulses and improve overall communication between different parts of the brain. It also helps to protect and insulate nerve fibers, providing structural support and maintaining the integrity of the neural network.
Action potential is a neural impulse.
impulses causing the release of a chemical signal and its diffusion across the synapse.
One factor that determines the rate of impulse propagation or conduction velocity along an axon is the myelination of the axon. Myelinated axons conduct impulses faster than unmyelinated axons due to the saltatory conduction mechanism, where the action potential jumps from one node of Ranvier to the next. Another factor is the axon diameter, as larger diameter axons have lower resistance to ion flow and can conduct impulses faster compared to smaller diameter axons.
Sensory receptors, such as photoreceptors in the eyes, mechanoreceptors in the skin, and chemoreceptors in the nose, are responsible for converting sensory messages (like light, pressure, and chemicals) into neural impulses. These neural impulses are then transmitted to the brain for processing and interpretation.
The retina is responsible for transducing light into neural impulses. It is a layer of tissue located at the back of the eye that contains photoreceptor cells (rods and cones) that convert light into electrical signals that can be processed by the brain.
the optic nerve in your eye
neural impulses from the brain
Retina
Action potential is a neural impulse.
Faster neural impulses occur in myelinated neurons, specifically at the nodes of Ranvier where the myelin sheath is interrupted. This allows for a process called saltatory conduction, where the action potential jumps from one node to the next, speeding up the transmission of electrical signals along the neuron.