answersLogoWhite

0

What else can I help you with?

Continue Learning about Astronomy

How can the Doppler shift explain wavelength shifts in both light and sound?

The Doppler Effect is an apparent change in the wavelength of radiation caused by relative motion of a source and observer. The pitch of sound is determined by its wavelength. You hear the Doppler Effect every time a car or truck passes you and the pitch of its engine noise or emergency siren seems to drop. Its sound is shifted to shorter wavelengths and higher pitches while it is approaching and is shifted to longer wavelengths and lower pitches after it passes by. The Doppler Effect can also explain shifts in light. As a light source approaches, the light will appear to have a shorter wavelength, making it slightly bluer. This is called a blueshift. A light source moving away from you has a longer wavelength and is slightly redder. This is a redshift. The Doppler shift, red or blue, reveals the relative motion of wave source and observer.


What does a blue and red shift of absorption lines in a spectrum indicate?

Blue shift is a decrease of a signal's wavelength, and/or an increase in its frequency, due to the Doppler Effect. This indicates that the object is moving towards the observer.Red shift is the increase of a signal's wavelength, and/or a decrease in its frequency, due to the Doppler Effect. This indicates that the object is moving away from the observer.


A Doppler red shift indicates?

that an object is moving away from an observer. This red shift occurs because the wavelength of light is stretched as the object moves farther away, causing it to appear more red. This effect is commonly seen in astronomy with galaxies moving away from us due to the expansion of the universe.


When does redshift occur?

Red shift occurs when an object is moving away from the observer.


What does a blue shift in the spectrum indicate?

A blue shift in the spectrum indicates that an object is moving toward the observer, resulting in a decrease in the wavelength of the emitted light. This phenomenon is often observed in astronomy, where it can signify that a star or galaxy is approaching Earth. The shift towards the blue end of the spectrum occurs due to the Doppler effect, which affects the frequency of waves as the source moves relative to an observer.

Related Questions

Is the Doppler effect is an apparent change in the resonance of a sound?

The Doppler effect is an apparent change in frequency or wavelength of a wave as perceived by an observer moving relative to the source of the wave. It is not specifically related to resonance but can affect the perceived pitch of sound as the source and observer move relative to each other.


How does the relative motion between the source of a wave and an observer effect the observation of the wave?

The relative motion between the source of a wave and an observer can affect the observed frequency and wavelength of the wave. If the source and observer are moving towards each other, the observer will perceive a higher frequency and shorter wavelength (Doppler effect). If they are moving away from each other, the observer will perceive a lower frequency and longer wavelength.


What happens when a star's spectrum is redshifted as a result of the Doppler effect?

With respect to light, the Doppler effect refers to the apparent change in the frequency (and wavelength) of electromagnetic radiation due to the relative motion of the source relative to the observer. When the source (i.e. a star) moves AWAY from the observer, there is an apparent rarefaction (expansion) in the wavelength of emitted light (i.e. frequency decreases), causing a shift in the emission spectrum towards the red side. This is known as redshifting --> the star is moving away from the observer. The opposite happens in blueshift, when the source moves towards the observer.


Does wavelenght change in Doppler effect?

yes, because as the source comes closer to the observer or vice versa the observer's frequency will be greater than the sourcer's frequency thus the wavelength will be less and vice versa.


How to calculate apparent frequency the source is ahead and observer is behind both moving the same direction?

The apparent frequency does not depend on who is in front.


What is the name of the apparent change in a pitch of a moving source called?

The apparent change in pitch of a moving sound source is called the Doppler effect. It describes how the frequency of the sound waves perceived by an observer changes as the source of the waves moves relative to the observer.


How the apparent motion of a object depend on the observer motion?

The apparent motion of an object can vary depending on the motion of the observer. This is due to the concept of relative motion, where the perception of an object's movement is influenced by the observer's own motion. For example, if the observer is moving towards an object, the object may appear to move faster than if the observer is stationary.


Would it be correct to say that the Doppler effect is the apparent change in the speed of a wave due to motion of the source?

No, the Doppler effect refers to the change in frequency or wavelength of a wave as observed by an observer moving relative to the source of the wave. It is not the change in speed of the wave itself, but rather how the perceived frequency or wavelength is altered by the motion of the source or the observer.


Does the frequency change if the observer moves?

Yes, the frequency of a wave changes if the observer is moving relative to the source of the wave. This is described by the Doppler effect, where the frequency appears higher if the observer is moving towards the source, and lower if the observer is moving away from the source.


What is the apparent change in frequency of a sound emitted by a moving object as it passes a stationarybobserver called?

The apparent change in frequency of a sound emitted by a moving object as it passes a stationary observer is called the Doppler effect. This effect causes the perceived frequency of the sound to change depending on the relative motion of the source and the observer – it is higher as the source approaches the observer and lower as it moves away.


What is a phenomenon that depends on the relative motion of the source and the observer?

The Doppler effect is a phenomenon that depends on the relative motion of the source and the observer. It is the change in frequency or wavelength of a wave in relation to an observer moving relative to the source of the wave.


The apparent change in the frequency of a sound emitted by a moving object as it passes a stationary abserver?

The apparent change in the frequency of a sound emitted by a moving object as it passes a stationary observer is called the Doppler effect. As the object moves towards the observer, the observer perceives a higher frequency (higher pitch) than what is actually emitted. Conversely, as the object moves away from the observer, the perceived frequency is lower than the actual frequency emitted.