If the object's mass is 120g, then it's 120g. On Earth, on the moon, on Mars,
or floating weightless in a space ship coasting from one of them to another.
Weight depends on where you are, but mass doesn't.
No, the mass density of an object would not be the same on the moon as on Earth. The mass of the object would remain the same, but since the gravitational pull on the moon is weaker than that on Earth, the volume of the object would decrease on the moon, resulting in a different mass density calculation compared to Earth.
The mass of an object remains the same regardless of its location. Mass is a measure of the amount of matter in an object, so it does not change when the object is moved from Earth to the Moon. However, the object's weight would change due to the difference in gravitational pull between Earth and the Moon.
It's 4.2 . An object's mass doesn't change. The thing that does change is the gravitational forcethat attracts the object to another mass. The strength of that force depends on the mass of bothobjects. The force on the first object is what we call the object's "weight".
The moon has 1/6th the gravity of the Earth. If something weighed 60 pounds on Earth it would weigh ten pounds on the Moon. The mass of the object would not change, as mass is the measurement of how much stuff you are.
The mass on the moon will remain the same, 20 kg If the object's mass is 20 kg, then it's 20 kg. On Earth, on the moon, on Mars, or floating weightless in a space ship coasting from one of them to another. Weight depends on where you are, but mass doesn't.
No, the mass density of an object would not be the same on the moon as on Earth. The mass of the object would remain the same, but since the gravitational pull on the moon is weaker than that on Earth, the volume of the object would decrease on the moon, resulting in a different mass density calculation compared to Earth.
The mass of an object would remain the same on the moon as it is on Earth. Mass is a measure of the amount of matter in an object, so it does not change with location. However, the weight of the object would be less on the moon due to the moon's lower gravity compared to Earth.
The amount of matter an object has, also known as its mass, would remain the same whether the object is on the moon or on Earth. Mass is an intrinsic property of an object and is independent of the object's location. However, the object's weight (the force of gravity acting on it) would be different on the moon compared to Earth due to the moon's lower gravity.
The mass of an object remains the same regardless of where it is located, so the object would still have a mass of 120 g on the moon. However, its weight would be different on the moon due to the moon's lower gravity compared to Earth.
The 10N object has the same mass whether on the moon or on Earth. Mass is an intrinsic property of an object that does not change with location. However, the weight of the object would be lower on the moon due to the moon's weaker gravity compared to Earth.
The mass of an object remains the same regardless of its location. Mass is a measure of the amount of matter in an object, so it does not change when the object is moved from Earth to the Moon. However, the object's weight would change due to the difference in gravitational pull between Earth and the Moon.
It's 4.2 . An object's mass doesn't change. The thing that does change is the gravitational forcethat attracts the object to another mass. The strength of that force depends on the mass of bothobjects. The force on the first object is what we call the object's "weight".
The moon is smaller than the Earth so that would mean the size is smaller and the mass is also smaller because the mass depends on the size of the object so the moon would have less mass than Earth.
The moon has 1/6th the gravity of the Earth. If something weighed 60 pounds on Earth it would weigh ten pounds on the Moon. The mass of the object would not change, as mass is the measurement of how much stuff you are.
The mass on the moon will remain the same, 20 kg If the object's mass is 20 kg, then it's 20 kg. On Earth, on the moon, on Mars, or floating weightless in a space ship coasting from one of them to another. Weight depends on where you are, but mass doesn't.
Because the gravitational force between any two objects depends on the product of both their masses. The object's weight on earth depends on the object's mass and the earth's mass, whereas its weight on the moon depends on the object's mass and the moon's mass. Since the moon's mass is very different from the earth's mass, the object's weight is also different there.
nothing would happen