A more massive planet is attracted more by the Sun if other things like the distance are equal. The force of gravity on a planet is proportional to the mass of the planet and inversely proportional to the sare of the distance.
Wiki User
∙ 9y agoYes, it can. The higher the planet's mass, the more satellites it can attract at greater distances, and the more it can keep in orbit around it.
You have the same mass anywhere, but you weigh more or less on a planet depending on the gravitaional pull of the planet. The more gravitational pull, the more you weigh. The gravitational pull depends on the size of the planet. The bigger the planet, the more gravitaional pull.
Its mass. More mass=more gravity Also the distance from the planet's center to its surface, i.e. its radius.
True
Mainly, the mass of a planet doesn't matter, considering many planets are made up of gas, and how in different situations, atmospheres can be destroyed (The Sun burnt off Mercury's Atmosphere). However, in some cases, the planet can be in a good situation on the galaxic map, and have great conditions for an atmosphere, such as Earth. In which case, the mass of an object can attract a smaller object, causing gravity. Therefore, the bigger the mass of a planet when in right and specific conditions, the more atmosphere it can attract, if there is any floating by the planet. If it is bigger it will have more gravitational influence and therefore gather more gases.
Yes, it can. The higher the planet's mass, the more satellites it can attract at greater distances, and the more it can keep in orbit around it.
Yes, it can. The higher the planet's mass, the more satellites it can attract at greater distances, and the more it can keep in orbit around it.
As you go down, more mass will attract you from above, less mass from below.
Gravity comes with mass so since a planet has mass there is some gravity. the bigger the planet the more mass it has. smaller planets have less gravity. so either way there is always some gravity on a planet.
Mainly, the mass of a planet doesn't matter, considering many planets are made up of gas, and how in different situations, atmospheres can be destroyed (The Sun burnt off Mercury's Atmosphere). However, in some cases, the planet can be in a good situation on the galaxic map, and have great conditions for an atmosphere, such as Earth. In which case, the mass of an object can attract a smaller object, causing gravity. Therefore, the bigger the mass of a planet when in right and specific conditions, the more atmosphere it can attract, if there is any floating by the planet. If it is bigger it will have more gravitational influence and therefore gather more gases.
Mainly, the mass of a planet doesn't matter, considering many planets are made up of gas, and how in different situations, atmospheres can be destroyed (The Sun burnt off Mercury's Atmosphere). However, in some cases, the planet can be in a good situation on the galaxic map, and have great conditions for an atmosphere, such as Earth. In which case, the mass of an object can attract a smaller object, causing gravity. Therefore, the bigger the mass of a planet when in right and specific conditions, the more atmosphere it can attract, if there is any floating by the planet. If it is bigger it will have more gravitational influence and therefore gather more gases.
Mainly, the mass of a planet doesn't matter, considering many planets are made up of gas, and how in different situations, atmospheres can be destroyed (The Sun burnt off Mercury's Atmosphere). However, in some cases, the planet can be in a good situation on the galaxic map, and have great conditions for an atmosphere, such as Earth. In which case, the mass of an object can attract a smaller object, causing gravity. Therefore, the bigger the mass of a planet when in right and specific conditions, the more atmosphere it can attract, if there is any floating by the planet. If it is bigger it will have more gravitational influence and therefore gather more gases.
You have the same mass anywhere, but you weigh more or less on a planet depending on the gravitaional pull of the planet. The more gravitational pull, the more you weigh. The gravitational pull depends on the size of the planet. The bigger the planet, the more gravitaional pull.
More Mass = Greater "surfacegravity".But also alarger diameter = Less "surface gravity".So, for example, if the planet is larger than Earthand has more mass then the gravitational force at its surfacecould be greater or lessthan Earth's.
Mainly, the mass of a planet doesn't matter, considering many planets are made up of gas, and how in different situations, atmospheres can be destroyed (The Sun burnt off Mercury's Atmosphere). However, in some cases, the planet can be in a good situation on the galaxic map, and have great conditions for an atmosphere, such as Earth. In which case, the mass of an object can attract a smaller object, causing gravity. Therefore, the bigger the mass of a planet when in right and specific conditions, the more atmosphere it can attract, if there is any floating by the planet. If it is bigger it will have more gravitational influence and therefore gather more gases.
Mainly, the mass of a planet doesn't matter, considering many planets are made up of gas, and how in different situations, atmospheres can be destroyed (The Sun burnt off Mercury's Atmosphere). However, in some cases, the planet can be in a good situation on the galaxic map, and have great conditions for an atmosphere, such as Earth. In which case, the mass of an object can attract a smaller object, causing gravity. Therefore, the bigger the mass of a planet when in right and specific conditions, the more atmosphere it can attract, if there is any floating by the planet. If it is bigger it will have more gravitational influence and therefore gather more gases.
It does not attract more heat is reflects less back.