Yes. According to Newton's Second Law, there has to be an unbalanced force - otherwise, the satellite won't accelerate (in this case, change direction).
The centripetal force acts towards the center of the circular path followed by the satellite, allowing it to maintain its orbit. In the case of a satellite orbiting Earth, the force of gravity provides the centripetal force required to keep the satellite in its orbit.
The force that provides the centripetal acceleration for a satellite in orbit is the gravitational force between the satellite and the celestial body it is orbiting, such as Earth. This gravitational force acts as the centripetal force that keeps the satellite in its circular path around the celestial body.
Centripetal force wants to move something towards the centre. So in a satellites case that would be the Gravity of the Earth. If you had a rock tied to a string you were spinning around, the Centripetal Force would be the tension in the string acting towards the centre.
If the velocity of the satellite is always perpendicular to the force of gravity, then the eccentricity of the orbit is zero, and it's perfectly circular.
Centripetal force is the force that keeps an artificial satellite in orbit around a celestial body, such as Earth. It is provided by the gravitational force between the satellite and the planet. The centripetal force acts as the inward force that continually changes the direction of the satellite's motion, allowing it to orbit the planet in a stable path.
The centripetal force acts towards the center of the circular path followed by the satellite, allowing it to maintain its orbit. In the case of a satellite orbiting Earth, the force of gravity provides the centripetal force required to keep the satellite in its orbit.
The force that provides the centripetal acceleration for a satellite in orbit is the gravitational force between the satellite and the celestial body it is orbiting, such as Earth. This gravitational force acts as the centripetal force that keeps the satellite in its circular path around the celestial body.
Centripetal force is what keeps a satellite in orbit around a celestial body, like Earth. This force is due to the gravitational attraction between the satellite and the celestial body. Electrical forces play a role in satellite communication and operation, but they are not directly responsible for keeping the satellite in orbit.
by means of the gravitational forces between it and the planet
The gravitational attraction by the Sun.
Centripetal force acting on an orbiting object is unbalanced since the object is being accelerated.Velocity is continually changing direction if not speed. This means an orbiting object is accelerating and the direction of acceleration is toward the center. In fact, centripetal means "center seeking."A person at rest on the surface of the Earth is being acted upon by a centripetal force (toward the center of the Earth, that is, down) which is exactly equal and opposite to the spring force of the Earth's matter pushing up. Thus, in this case, the centripetal force is balanced.The previous answer (below) is generally incorrect.No,because when a body revolves round an orbit,its CENTRIPETAL force is balanced by the WEIGHT of the body!thank you!!
Its a centripetal force, whose origin/source is gravitation.
by means of the gravitational forces between it and the planet
No, centripetal force is the force required to keep an object moving in a circular path, while gravitational force is the force of attraction between two objects due to their mass. In the case of a satellite orbiting a planet, the centripetal force required to keep the satellite in orbit is provided by the gravitational force between the satellite and the planet.
The force that keeps a satellite in motion is the gravitational force of the planet it is orbiting. This force acts as a centripetal force, pulling the satellite towards the planet and keeping it in its orbit.
Centripetal force wants to move something towards the centre. So in a satellites case that would be the Gravity of the Earth. If you had a rock tied to a string you were spinning around, the Centripetal Force would be the tension in the string acting towards the centre.
In a circular orbit with negligible air resistance, the main forces acting on a satellite are the gravitational force pulling it towards the Earth's center, and the centripetal force keeping it in its circular path. These two forces are balanced, allowing the satellite to maintain a stable orbit.