A geostationary satellite takes approximately 24 hours to complete one revolution around the Earth. This period matches the Earth's rotation period, allowing the satellite to remain fixed over a specific point on the equator. As a result, it appears stationary relative to the surface of the Earth.
the communication satellites take 24 hours to complete their one revolution around the earthso the orbit of revolving satellite is called geostationary orbit.
The time it takes for a satellite to complete one full orbit around the Earth, known as its orbital period, can vary depending on the altitude of the satellite. On average, a satellite in low Earth orbit (LEO) typically takes about 90 minutes to complete one orbit, while a geostationary satellite orbits the Earth every 24 hours.
A Geostationary orbit - it means that the satellite will always stay above the same point on Earth. Hope that helps
A geostationary satellite orbits the Earth at the same speed that the Earth rotates, allowing it to remain in a fixed position relative to a specific point on the Earth's surface. This type of satellite is typically positioned at an altitude of around 35,786 kilometers above the equator, allowing it to maintain a constant view of a specific region on Earth. Geostationary satellites are commonly used for communication, weather monitoring, and navigation purposes.
this is if it is not a geostationary orbit, in which case it is always in the same place relative to earth. imagine a circle of radius 42250km+radius of earth(6,356km). it's perimeter is 2 x pi x 48606km = satellite's journey. then think of a really fast speed, which is the speed the satellite is moving at. divide the distance by speed and you have the time of one orbit However, by the height being 42250 , it makes me think the satellite is a geostationary satellite and so it would take 24 hours moving at approximately 12725 kmph does that answer your question?
the communication satellites take 24 hours to complete their one revolution around the earthso the orbit of revolving satellite is called geostationary orbit.
The time it takes for a satellite to complete one full orbit around the Earth, known as its orbital period, can vary depending on the altitude of the satellite. On average, a satellite in low Earth orbit (LEO) typically takes about 90 minutes to complete one orbit, while a geostationary satellite orbits the Earth every 24 hours.
it's hot. ;)
A satellite in a geostationary orbit orbits the Earth at around 22,300 miles above the equator. Geostationary satellites appear to be stationary in the sky relative to a fixed point on the Earth's surface, making them ideal for communication and weather monitoring.
A Geostationary orbit - it means that the satellite will always stay above the same point on Earth. Hope that helps
a weather satellite and it rotates around the Earth at the same rate and in the same direction that Earth revolves so it is always fixed over the same location.
A geostationary satellite orbits the Earth at the same speed that the Earth rotates, allowing it to remain in a fixed position relative to a specific point on the Earth's surface. This type of satellite is typically positioned at an altitude of around 35,786 kilometers above the equator, allowing it to maintain a constant view of a specific region on Earth. Geostationary satellites are commonly used for communication, weather monitoring, and navigation purposes.
Only artificial, geostationary satellites.
this is if it is not a geostationary orbit, in which case it is always in the same place relative to earth. imagine a circle of radius 42250km+radius of earth(6,356km). it's perimeter is 2 x pi x 48606km = satellite's journey. then think of a really fast speed, which is the speed the satellite is moving at. divide the distance by speed and you have the time of one orbit However, by the height being 42250 , it makes me think the satellite is a geostationary satellite and so it would take 24 hours moving at approximately 12725 kmph does that answer your question?
Answer: A geostationary satellite is any satellite which is placed in a geostationary orbit. Satellites in geostationary orbit maintain a constant position relative to the surface of the earth. Geostationary satellites do this by orbiting the earth at approximately 22,300 miles above the equator. At this altitude, the speed of a satellite's rotation around the world is identical to the rotational speed of the world itself. While the satellite is actually moving; but moving at the same speed as the rotational speed of the world itself, it is always appears in the same azimuthal (angle); latitudinal and longitudinal position of the sky over the equator. Being geostationary allows an earth receiving & transmitting station to maintain bidirectional communications with satellites without the need of having to always reposition the earth based "dish" like antenna. A practical example is one's home whose television is connected to a unidirectional (receives only) dish antenna. If the satellite that the dish antenna is aimed at was not geostationary, people would lose the satellite's signal as soon as it deviated one degree from its position. In general, all data, audio & video satellites are launched into a geostationary orbit.
That is the exact questin i had!!
it revolves around Earth at the same rate that Earth is rotating so that it is always fixed over the same location