look at ur balls and cry
The weight of an astronaut on Earth is determined by their mass multiplied by the gravitational acceleration of Earth, which is approximately 9.81 m/s². For example, if an astronaut has a mass of 80 kg, their weight on Earth would be about 784 Newtons (N). On the Moon, the gravitational acceleration is about 1.62 m/s², so the same astronaut would weigh approximately 129.6 N on the Moon. Thus, the astronaut's weight decreases significantly when on the Moon due to the lower gravitational pull.
The mass of an astronaut remains the same on the moon as it does on Earth. Mass is a measure of the amount of matter in an object and does not change based on location. However, the astronaut's weight would be less on the moon due to the moon's lower gravitational force compared to Earth.
Weight on the Moon can be calculated using the Moon's gravitational pull, which is about 1/6th that of Earth's. If an astronaut and his equipment weigh 300 pounds on Earth, their weight on the Moon would be approximately 50 pounds (300 divided by 6). Therefore, the astronaut and his equipment would weigh about 50 pounds on the Moon.
The weight of a 90-kg astronaut on Earth would be approximately 882.9 Newtons (N). This is calculated by multiplying the astronaut's mass (90 kg) by the acceleration due to gravity on Earth (9.81 m/s^2).
The mass of an astronaut on Earth would be the same as their mass in space. Mass is a measure of the amount of matter in an object and does not change with location. It is the weight of the astronaut that would vary depending on the gravitational force acting on them.
The weight of an astronaut on Earth is determined by their mass multiplied by the gravitational acceleration of Earth, which is approximately 9.81 m/s². For example, if an astronaut has a mass of 80 kg, their weight on Earth would be about 784 Newtons (N). On the Moon, the gravitational acceleration is about 1.62 m/s², so the same astronaut would weigh approximately 129.6 N on the Moon. Thus, the astronaut's weight decreases significantly when on the Moon due to the lower gravitational pull.
Mars> slim to none Earth> 9.67% Reason: No astronaut can make it to Mars
The mass of an astronaut remains the same on the moon as it does on Earth. Mass is a measure of the amount of matter in an object and does not change based on location. However, the astronaut's weight would be less on the moon due to the moon's lower gravitational force compared to Earth.
About 700N 70kg • 10m/s = 700N
Weight on the Moon can be calculated using the Moon's gravitational pull, which is about 1/6th that of Earth's. If an astronaut and his equipment weigh 300 pounds on Earth, their weight on the Moon would be approximately 50 pounds (300 divided by 6). Therefore, the astronaut and his equipment would weigh about 50 pounds on the Moon.
The weight of a 90-kg astronaut on Earth would be approximately 882.9 Newtons (N). This is calculated by multiplying the astronaut's mass (90 kg) by the acceleration due to gravity on Earth (9.81 m/s^2).
earth, because earth has a greater gravitational pull
The mass of an astronaut on Earth would be the same as their mass in space. Mass is a measure of the amount of matter in an object and does not change with location. It is the weight of the astronaut that would vary depending on the gravitational force acting on them.
The weight of an object is calculated using the formula ( \text{Weight} = \text{mass} \times \text{gravity} ). For a 60 kg astronaut on Earth, where the acceleration due to gravity is approximately ( 9.81 , \text{m/s}^2 ), the weight would be ( 60 , \text{kg} \times 9.81 , \text{m/s}^2 = 588.6 , \text{N} ). Therefore, the astronaut weighs about 588.6 newtons on Earth.
On the Earth, the object weighs 6.04 times as much as its weight on the moon.
An astronaut weighing 96 kg on Earth would weigh significantly less on the Moon due to the Moon's weaker gravitational pull. The Moon's gravity is about 1/6th that of Earth's. Therefore, to find the astronaut's weight on the Moon, you would multiply their Earth weight by the Moon's gravity factor: 96 kg × (1/6) ≈ 16 kg. Thus, the astronaut would weigh approximately 16 kg on the Moon.
Your weight is a function (G=mg) of the gravitational pull (g) and the mass of the object in question (m). The mass of the Moon is only 1/6 that of Earth, so the astronaut on the Moon weighs only 1/6th as much as he does on Earth. His mass does not change.