look at ur balls and cry
The mass of an astronaut remains the same on the moon as it does on Earth. Mass is a measure of the amount of matter in an object and does not change based on location. However, the astronaut's weight would be less on the moon due to the moon's lower gravitational force compared to Earth.
The weight of a 90-kg astronaut on Earth would be approximately 882.9 Newtons (N). This is calculated by multiplying the astronaut's mass (90 kg) by the acceleration due to gravity on Earth (9.81 m/s^2).
The mass of an astronaut on Earth would be the same as their mass in space. Mass is a measure of the amount of matter in an object and does not change with location. It is the weight of the astronaut that would vary depending on the gravitational force acting on them.
The weight of an object is calculated using the formula ( \text{Weight} = \text{mass} \times \text{gravity} ). For a 60 kg astronaut on Earth, where the acceleration due to gravity is approximately ( 9.81 , \text{m/s}^2 ), the weight would be ( 60 , \text{kg} \times 9.81 , \text{m/s}^2 = 588.6 , \text{N} ). Therefore, the astronaut weighs about 588.6 newtons on Earth.
On the Earth, the object weighs 6.04 times as much as its weight on the moon.
Mars> slim to none Earth> 9.67% Reason: No astronaut can make it to Mars
The mass of an astronaut remains the same on the moon as it does on Earth. Mass is a measure of the amount of matter in an object and does not change based on location. However, the astronaut's weight would be less on the moon due to the moon's lower gravitational force compared to Earth.
About 700N 70kg • 10m/s = 700N
The weight of a 90-kg astronaut on Earth would be approximately 882.9 Newtons (N). This is calculated by multiplying the astronaut's mass (90 kg) by the acceleration due to gravity on Earth (9.81 m/s^2).
earth, because earth has a greater gravitational pull
The mass of an astronaut on Earth would be the same as their mass in space. Mass is a measure of the amount of matter in an object and does not change with location. It is the weight of the astronaut that would vary depending on the gravitational force acting on them.
On the Earth, the object weighs 6.04 times as much as its weight on the moon.
Your weight is a function (G=mg) of the gravitational pull (g) and the mass of the object in question (m). The mass of the Moon is only 1/6 that of Earth, so the astronaut on the Moon weighs only 1/6th as much as he does on Earth. His mass does not change.
The moon is considerably smaller than the Earth, both in diameter and in mass, and it therefore has a much weaker gravitational field. The weight of an astronaut on the moon is the result of the mass of the astronaut, which is not changed by going to the moon, and the gravitation field of the moon. A weaker gravitational field produces a lower weight.
weight= mass*gravity in this case, an astronauts mass has stayed the same, but the gravitational force acting upon him has decreased, decreasing his weight. gravity decreses because the astronaut is further from the centre of gravitational attraction (the earth)
the sun reflects the light to the astronaut eyes so the astronaut can see the Earth .
An astronaut will weigh less on the moon compared to on Earth due to the moon's lower gravity. The moon's gravitational pull is about 1/6th of Earth's, so an astronaut's weight would be significantly reduced on the moon.