We can't be sure. The only thing we know for sure is that it could be explained as
the speed with which that galaxy is receding from us. If that's actually the cause
of the red shift, then from all the red shifts that we observe, we have to conclude
that all of the distant galaxies are receding from us, and the farther away one is
already, the faster it's receding. If all of that is true, then the whole universe is
expanding. This is the research that made Hubble famous.
Well said, but there is another reason. Maybe the light is coming from a large star (gravity hole, red shift due to gravity).
The red shift spectra of galaxies show that most galaxies are moving away from us, indicating that the universe is expanding. This observation supports the Big Bang theory, which suggests that the universe began in a state of high density and temperature and has been expanding ever since. The amount of red shift in a galaxy's spectrum can also provide information about its distance from us and its velocity.
The light from distant galaxies shows redshift because the universe is expanding. As the galaxies move away from us, the light they emit gets stretched, causing its wavelength to increase and shift towards the red end of the spectrum. This redshift can help scientists determine the velocity at which galaxies are moving away from us and provide insights into the expansion of the universe.
Red shift indicates that other galaxies are moving away from us, implying that the universe is expanding. This phenomenon is a key piece of evidence supporting the Big Bang theory. The amount of red shift is used to determine the distance and speed at which other galaxies are moving relative to us.
Generally, the galaxies that are further away will have the larger red shifts.
Scientists use the red shift of light from distant galaxies to measure their distance from us. By measuring the rate of expansion of the universe using red shift data, scientists can calculate the age of the universe, known as the Hubble time, which is currently estimated to be around 13.8 billion years.
The red end of the spectrum.
The red shift spectra of galaxies show that most galaxies are moving away from us, indicating that the universe is expanding. This observation supports the Big Bang theory, which suggests that the universe began in a state of high density and temperature and has been expanding ever since. The amount of red shift in a galaxy's spectrum can also provide information about its distance from us and its velocity.
The light from distant galaxies shows redshift because the universe is expanding. As the galaxies move away from us, the light they emit gets stretched, causing its wavelength to increase and shift towards the red end of the spectrum. This redshift can help scientists determine the velocity at which galaxies are moving away from us and provide insights into the expansion of the universe.
When galaxies move away from us, the waves of light stretch out- ie, they become redder. The greater the red shift, the faster the galaxies are moving away from us.
Red shift indicates that other galaxies are moving away from us, implying that the universe is expanding. This phenomenon is a key piece of evidence supporting the Big Bang theory. The amount of red shift is used to determine the distance and speed at which other galaxies are moving relative to us.
Generally, the galaxies that are further away will have the larger red shifts.
Galaxies that are moving away from the sun are red shifted, that is the light from them looks more red to us that it is when it is emitted. This is due to the speed of the galaxy moving away from which in effect stretches out the wavelengths of the light. Red shift is not the method by which galaxies move away from the sun, rather, it is a consequence of it.
The Hubble telescope did not discover that there is a red shift in the spectra of Galaxies. The telescope is named after the American astronomer, Edwin Hubble, who discovered the phenomenon in the 1920s.
Scientists use the red shift of light from distant galaxies to measure their distance from us. By measuring the rate of expansion of the universe using red shift data, scientists can calculate the age of the universe, known as the Hubble time, which is currently estimated to be around 13.8 billion years.
The Red Shift or Doppler effect
That is called a red shift or a Doppler shift.
The red shift depends on the relative motion of the emitting source and receiving detector. Hydrogen per se has no red shift. There is hydrogen with great red shift (in stars in galaxies far away that are moving rapidly away from us).