Using Wien's displacement law, we can relate the peak wavelength to the temperature of the star. The ratio of their temperatures is approximately 700 nm / 450 nm = 1.56.
The Sun emits light in a broad range of wavelengths, peaking in the visible spectrum around 500 nanometers, which is green light. This peak intensity is a result of the Sun's temperature, which determines its blackbody radiation curve.
The spectrum of light from a star appears continuous, without gaps, because it is a result of the superposition of light emitted at different wavelengths. This continuous spectrum is produced as the star emits light across a range of wavelengths leading to a smooth distribution of colors in the spectrum.
some of the light from the corona produces a continuous spectrum that lacks absorption lines. however the type is absorption spectrum
A blackbody is an idealized object that absorbs all electromagnetic radiation incident on it and re-emits it. It emits radiation in a continuous spectrum that depends only on its temperature. A blackbody also serves as a useful standard for understanding and comparing the emission of real objects.
Yes. The apparent colour of a star is related to the peak wavelength of the light it emits. According to Wien's displacement law (look it up in Wikipedia) the peak wavelength is inversely proportional to the temperature. The higher the temperature, the shorter the peak wavelength. Wavelength decreases as one moves from red to blue in the visible spectrum, so a red star is cooler than a blue one.
A hot, glowing wire emits all wavelengths (or colors) of light. This is sometimes called "blackbody radiation." Since all colors are present, you will get a continuous spectrum.
An incandescent bulb emits a continuous spectrum of light, which includes all colors of the visible spectrum.
A lightbulb primarily produces a continuous spectrum rather than a discrete spectrum. This is because it emits light through thermal radiation, where the filament heats up and emits a broad range of wavelengths. In contrast, a discrete spectrum is characteristic of gases or certain materials that emit light at specific wavelengths due to electronic transitions. Therefore, while a lightbulb emits a continuous spectrum, it does not produce a discrete spectrum.
The wavelength of maximum intensity in sunlight is around 500 nm, which is in the green portion of the visible spectrum. This wavelength corresponds to the peak of the solar radiation spectrum and is where the sun emits the most energy.
No, an incandescent bulb i.e. a bulb that emits light by the generation of heat, emits white light and is therefore not monochromatic. For a source to be monochromatic, the light emitted must be of a single wavelength.
The temperature of stars can be estimated using Wien's law, which states that the wavelength at which a star emits the most light is inversely proportional to its temperature. This relationship allows astronomers to analyze the peak wavelength of a star's spectrum to determine its temperature.
The sun emits a continuous spectrum, which includes all wavelengths of light across the electromagnetic spectrum. This spectrum results from the thermal radiation of the sun's surface.
An incandescent gas emits a continuous spectrum of light, encompassing a wide range of frequencies. The specific frequencies emitted depend on the composition and temperature of the gas.
The Sun emits light in a broad range of wavelengths, peaking in the visible spectrum around 500 nanometers, which is green light. This peak intensity is a result of the Sun's temperature, which determines its blackbody radiation curve.
The spectrum of light from a star appears continuous, without gaps, because it is a result of the superposition of light emitted at different wavelengths. This continuous spectrum is produced as the star emits light across a range of wavelengths leading to a smooth distribution of colors in the spectrum.
some of the light from the corona produces a continuous spectrum that lacks absorption lines. however the type is absorption spectrum
A blackbody is an idealized object that absorbs all electromagnetic radiation incident on it and re-emits it. It emits radiation in a continuous spectrum that depends only on its temperature. A blackbody also serves as a useful standard for understanding and comparing the emission of real objects.