about 9.795m/s2 but
9.8m/s2 is almost always used.
Note: centripetal acceleration (from the earth's spin) cause apparent gravity to be about 0.3% less than actual gravity (about 9.767m/s2) at the equator
you can find the acceleration of gravity on any planet by the equation:
a=G(M/R2) where 'a' is the acceleration due to gravity, G is the gravitational constant (about .0000000000667), M is the mass of the earth ( or other planet), and R is the radius of the earth (or other planet)
References:
A.P. Physics class
Acceleration due to gravity on Saturn = 11.171 m/s2 (9.807 m/s2 on Earth)
The magnitude of acceleration due to gravity depends on the mass of the object toward which you're attracted by gravity, and on your distance from it. There are trillions of different possibilities in space.
Weight depends on acceleration due to gravity and similarly acceleration due gravity depends on force of gravity. The force of gravity of moon is 6times less than that of earth and due to this their is variation in acceleration due to gravith between the earth and the moon. As there is difference in acceleration due to gravity between the earth and moon, the magnitude of weight also vary . And next most important thing to keep on mind is that mass is independent of gravity so it does not change anywhere ....
Gravity is pretty constant figure anywhere on earth, essentially its dependent on your distance from the center of gravity of the earth, nominally it will produce an acceleration of 9.81((m/s/)/s) at the earths surface. Gravity is dependent on mass and independent of motion , ie mass of earth attracting mass of person , attraction being proportional to total mass of both and distance between their centers of gravity. However , a very small opposing acceleration outwards is experienced because you are rotating about the earths axis (centrifugal action) , its maximum effect is on the equator and zero effect at the poles. this acceleration can be calculated from: a = (v^2)/r where: a = acceleration ((m/s)/s) v = velocity (m/s) r = radius or normal distance from earths axis (m)
No. Acceleration due to gravity on the moon is roughly 1/6 of that on Earth.
Not for sure but it seems like there would be more gravity at the equator than at the poles. The earth rotates and creates a centrifugal acceleration at the equator the counters the force of gravity. acceleration due to gravity =GM/R2 acceleration due to rotation =V2/R So gravity at the equator is GM/R2 - V2/R
Acceleration due to gravity is greater at the surface of the Earth compared to higher altitudes or in outer space. This is because the force of gravity is stronger closer to the center of mass of an object, such as the Earth.
no, but the electromagnetic field of the earth does.
It varies depending on your latitude with the equator having a slightly higher acc. due to gravity than the north/south pole . 9.8 m/s^2 is the average for the earth
The acceleration due to gravity at sea level at the equator is 32.25744 feet/second2 (983.2186 cm/second2)Formula for your own altitude:Acceleration Due to Gravity (cm/s2) at Altitude (h) = Acceleration Due to Gravity (cm/s2) at Sea Level - 0.3086hwhere h is the altitude in kilometers.
acceleration due to gravity of earth is 9.8ms-2
Acceleration due to gravity on Saturn = 11.171 m/s2 (9.807 m/s2 on Earth)
I suppose you are asking about what forces change when acceleration due to gravity changes. In this case, the formula for forces concerning acceleration due to gravity is as such: fg=mg. When acceleration due to gravity(g) changes, it affects the force of gravity which is also known as the weight of the object. This is shown as fg.
No, acceleration due to gravity does not change the weight of an object. Weight is determined by the mass of the object and the acceleration due to gravity in that location. The acceleration due to gravity affects the force with which an object is pulled toward the center of the Earth, leading to its weight.
Acceleration due to gravityThe acceleration produced in the motion of a body under gravity is called Acceleration.
The period of a pendulum (in seconds) is 2(pi)√(L/g), where L is the length and g is the acceleration due to gravity. As acceleration due to gravity increases, the period decreases, so the smaller the acceleration due to gravity, the longer the period of the pendulum.
The symbol for acceleration due to gravity is "g."